

MATERIAL PARA LINHAS ELÉTRICAS

Armações de aço para postes de betão de MT

Características e ensaios

Elaboração: DTI Homologação: conforme despacho do CA de 2018-06-07

Edição: 2ª. Anula e substitui a edição de AGO 2005

Revisão: 1. Aprovação conforme despacho do diretor da DTI de

2018-08-10

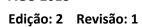
Acesso: X Livre Restrito Confidencial

Emissão: EDP Distribuição – Energia, S.A.

DTI – Direção de Tecnologia e Inovação

R. Camilo Castelo Branco, 43 • 1050-044 Lisboa • Tel.: 210021400

E-mail: dti@edp.pt


ÍNDICE

1 OBJETO	ÍNDICE .		2
1 OBJETO	ÍNDICE I	DE QUADROS	4
2 CAMPO DE APLICAÇÃO 6 3 DOCUMENTOS DE REFERÊNCIA 8 3.1 Documentos EDP Distribuição 8 3.2 Normas europeias 8 3.3 Normas internacionais 12 4 TERMOS E DEFINIÇÕES 13 4.1 Definições gerais 13 4.2 Definições das armações de MT 15 5 AREVIATURAS 16 6.1 Marcação CE 17 6.2 Referências das armações 17 6.3 Desenhos das armações 17 6.4 Componentes das armações 17 6.5 Materiais das armações 17 6.6 Dimensões tolerâncias dos componentes das armações 22 6.7 Aspeto de superfície do revestimento 28 6.7.1 Aspeto de superfície do revestimento 28 6.7.2 Aderência do revestimento 28 6.7.3 Continuidade e uniformidade do revestimento 28 6.7.4 Massa por unidade de superfície e espessura do rev	0	INTRODUÇÃO	5
3 DOCUMENTOS DE REFERÊNCIA 8 3.1 Documentos EDP Distribuição 8 3.2 Normas europeias 8 3.3 Normas internacionis 12 4 TERMOS E DEFINIÇÕES 13 4.1 Definições gerais 13 4.2 Definições das armações de MT 15 5 ABREVIATURAS 16 6.1 Marcação CE 17 6.2 Referências das armações 17 6.3 Desenhos das armações 17 6.4 Componentes das armações 17 6.5 Materiais das armações 20 6.6 Dimensões e tolerâncias dos componentes das armações 22 6.6 Dimensões e tolerâncias dos componentes das armações 22 6.7 Aderência do revestimento 28 6.7.2 Aderência do revestimento 28 6.7.2 Aderência do revestimento 28 6.7.3 Continuidade e unifornidade do revestimento 28 6.7.3 Continuidade e unifornidade do re	1	OBJETO	6
3.1 Documentos EDP Distribuição 8 3.2 Normas europelas 8 3.3 Normas internacionals 12 4 TERMOS E DEFINIÇÕES 13 4.1 Definições gerais 13 4.2 Definições gerais 15 5 ABREVIATURAS 16 6 CARACTERÍSTICAS DAS ARMAÇÕES 16 6.1 Marcação CE 17 6.2 Referências das armações 17 6.3 Desenhos das armações 17 6.4 Componentes das armações 17 6.5 Revestimento de superfície 20 6.6 Diemosões e tolerâncias dos componentes das armações 22 6.6 Diemosões e tolerâncias dos componentes das armações 22 6.7 Revestimento de superfície 27 6.7.1 Aspeto de superfície de revestimento 28 6.7.2 Aderância do revestimento 28 6.7.3 Aspeto de superfície de revestimento 28 6.7.4 Massa por unidade de superficie de revestimento 28 7 MARCAÇÃO <	2	CAMPO DE APLICAÇÃO	6
3.1 Documentos EDP Distribuição 8 3.2 Normas europeias 8 3.3 Normas internacionals 12 4 TERMOS E DEFINIÇÕES 13 4.1 Definições gerais 13 4.2 Definições gerais 15 5 ABREVIATURAS 16 6 CARACTERÍSTICAS DAS ARMAÇÕES 16 6.1 Marcação CE 17 6.2 Referências das armações 17 6.3 Desenhos das armações 17 6.4 Componentes das armações 17 6.5 Materiais das armações 17 6.5 Materiais das armações 17 6.6 Diemasões e tolerâncias do scomponentes das armações 20 6.6 Diemasões e tolerâncias do scomponentes das armações 22 6.7 Revestimento de superfície 27 6.7 Aspeto de superfície do revestimento 28 6.7.1 Aspeto de superfície do revestimento 28 6.7.2 Aderância do revestimento 28 6.7.3 Continuidade du niformidade do revestimento	3	DOCUMENTOS DE REFERÊNCIA	8
3.2 Normas europeias 8 3.3 Normas internacionais 12 4.1 Definições gerais 13 4.2 Definições das armações de MT 15 5 ABREVIATURAS 16 6. CARACTERISTICAS DAS ARMAÇÕES 16 6.1 Marcação CE 17 6.2 Referências das armações 17 6.3 Desenhos das armações 17 6.4 Componentes das armações 17 6.5 Dimensões e tolerâncias dos componentes das armações 20 6.6 Dimensões e tolerâncias dos componentes das armações 22 6.7 Revestimento de superfície 27 6.7 Aspeto de superfície do revestimento 28 6.7.2 Aderância do revestimento 28 6.7.3 Continuidade e uniformidade do revestimento 28 6.7.4 Massa por unidade de superfície e espessura do revestimento 28 7 MARCAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.5 Falacia de terreção <t< td=""><td>2 1</td><td></td><td></td></t<>	2 1		
3.3 Normas internacionais 12 4 TERMOS E DEFINIÇÕES. 13 4.1 Definições gerais. 15 4.2 Definições das armações de MT. 15 5 ABREVIATURAS. 16 6 CARACTERÍSTICAS DAS ARMAÇÕES. 16 6.1 Marcação CE. 17 6.2 Referências das armações. 17 6.3 Desenhos das armações. 17 6.4 Componentes das armações. 17 6.5 Materiais das armações. 20 6.6 Dimensões e tolerâncias dos componentes das armações. 22 6.7 Revestimento de superfície. 27 6.7 Revestimento de superfície do revestimento. 28 6.7.2 Aderência do revestimento. 28 6.7.3 Continuidade e uniformidade do revestimento. 28 6.7.3 Continuidade do revestimento. 28 6.7.4 Massa por unidade do revestimento. 28 8.7 MARCAÇÃO. 30 8.8 FABRICAÇÃO 31 8.1 Desempeno. 31 <td></td> <td>•</td> <td></td>		•	
4.1 Definições gerais. 13 4.2 Definições das armações de MT. 15 5 ABREVIATURAS. 16 6 CARACTERÍSTICAS DAS ARMAÇÕES. 16 6.1 Marcação CE. 17 6.2 Referências das armações. 17 6.3 Desenhos das armações. 17 6.4 Componentes das armações. 17 6.5 Materiais das armações. 20 6.6 Dimensões e tolerâncias dos componentes das armações. 22 6.6 Dimensões e tolerâncias dos componentes das armações. 22 6.7 Austrimento de superficie. 22 6.8 Paretimento de superficie do revestimento. 28 6.7.1 Aspeto de superficie do revestimento. 28 6.7.2 Aderência do revestimento. 28 6.7.3 Continuidade e uniformidade do revestimento. 28 6.7.4 Massa por unidade de superficie e espessura do revestimento. 28 7 MARCAÇÃO. 30 8 FABRICAÇÃO 31 8.2 Forjamento. 32 8.3 <td>3.3</td> <td>·</td> <td></td>	3.3	·	
4.2 Definições das armações de MT .15 5 ABREVIATURAS .16 6 CARACTERÍSTICAS DAS ARMAÇÕES .16 6.1 Marcação CE .17 6.2 Referências das armações .17 6.3 Desenhos das armações .17 6.4 Componentes das armações .17 6.5 Materiais das armações .20 6.6 Dimensões e tolerâncias dos componentes das armações .22 6.7 Revestimento de superfície .27 6.7.1 Aspet do e superfície do revestimento .28 6.7.2 Aderência do revestimento .28 6.7.3 Continuidade do superfície e espessura do revestimento .28 6.7.4 Massa por unidade de superfície e espessura do revestimento .28 7 MARCAÇÃO .30 8 FABRICAÇÃO .31 8.1 Desempeno .31 8.2 Forjamento .32 8.3 Corte .32 8.4 Furação .33 8.5 Galvanização .34 <	4	TERMOS E DEFINIÇÕES	13
4.2 Definições das armações de MT .15 5 ABREVIATURAS .16 6 CARACTERÍSTICAS DAS ARMAÇÕES .16 6.1 Marcação CE .17 6.2 Referências das armações .17 6.3 Desenhos das armações .17 6.4 Componentes das armações .17 6.5 Materiais das armações .20 6.6 Dimensões e tolerâncias dos componentes das armações .22 6.7 Revestimento de superfície .27 6.7.1 Aspet do e superfície do revestimento .28 6.7.2 Aderência do revestimento .28 6.7.3 Continuidade do superfície e espessura do revestimento .28 6.7.4 Massa por unidade de superfície e espessura do revestimento .28 7 MARCAÇÃO .30 8 FABRICAÇÃO .31 8.1 Desempeno .31 8.2 Forjamento .32 8.3 Corte .32 8.4 Furação .33 8.5 Galvanização .34 <	<i>1</i> 1	Definições gerais	12
5 ABREVIATURAS 16 6 CARACTERÍSTICAS DAS ARMAÇÕES 16 6.1 Marcação CE 17 6.2 Referências das armações 17 6.3 Desenhos das armações 17 6.4 Componentes das armações 17 6.5 Materiais das armações 20 6.6 Dimensões e tolerâncias dos componentes das armações 22 6.7 Revestimento de superfície do revestimento 28 6.7.2 Aderência do revestimento 28 7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.5 Gal	4.2	, 0	
6 CARACTERÍSTICAS DAS ARMAÇÕES 16 6.1 Marcação CE 17 6.2 Referências das armações 17 6.3 Desenhos das armações 17 6.4 Componentes das armações 17 6.5 Materiais das armações 20 6.6 Dimensões e tolerâncias dos componentes das armações 22 6.7 Revestimento de superfície 27 6.7.1 Aspeto de superfície do revestimento 28 6.7.2 Aderência do revestimento 28 6.7.3 Continuidade do revestimento 28 6.7.4 Massa por unidade de superfície e espessura do revestimento 28 6.7.4 MASSA por unidade de superfície e espessura do revestimento 28 7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furgção 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 <t< td=""><td>_</td><td>•</td><td></td></t<>	_	•	
6.1 Marcação CE 17 6.2 Referências das armações 17 6.3 Desenhos das armações 17 6.4 Componentes das armações 17 6.5 Materiais das armações 20 6.6 Dimensões e tolerâncias dos componentes das armações 22 6.7 Revestimento de superfície do revestimento 28 6.7.1 Aspeto de superfície do revestimento 28 6.7.2 Aderência do revestimento 28 6.7.3 Continuidade de uniformidade do revestimento 28 6.7.4 Massa por unidade de superfície e espessura do revestimento 28 7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 33 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12.1 Ensaios sobre elementos e	5		
6.2 Referências das armações 17 6.3 Desenhos das armações 17 6.4 Componentes das armações 17 6.5 Materiais das armações 20 6.6 Dimensões e tolerâncias dos componentes das armações 22 6.7 Revestimento de superfície 27 6.7.1 Aspeto de superfície do revestimento 28 6.7.2 Aderência do revestimento 28 6.7.3 Continuidade e uniformidade do revestimento 28 6.7.4 Massa por unidade de superfície e espessura do revestimento 28 7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2	6	CARACTERÍSTICAS DAS ARMAÇÕES	16
6.3 Desenhos das armações 17 6.4 Componentes das armações 17 6.5 Materiais das armações 20 6.6 Dimensões e tolerâncias dos componentes das armações 22 6.7 Revestimento de superfície 27 6.7.1 Aspeto de superfície do revestimento 28 6.7.2 Aderência do revestimento 28 6.7.3 Continuidade e uniformidade do revestimento 28 6.7.4 Massa por unidade de superfície e espessura do revestimento 28 7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.1 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas)	6.1	Marcação CE	17
6.4 Componentes das armações 17 6.5 Materiais das armações 20 6.6 Dimensões e tolerâncias dos componentes das armações 22 6.7.7 Revestimento de superfície 27 6.7.1 Aspeto de superfície do revestimento 28 6.7.2 Aderência do revestimento 28 6.7.3 Continuidade e uniformidade do revestimento 28 6.7.4 Massa por unidade de superfície e espessura do revestimento 28 7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 43	6.2		
6.5 Materiais das armações 20 6.6 Dimensões e tolerâncias dos componentes das armações 22 6.7 Revestimento de superfície do revestimento 28 6.7.1 Aspeto de superfície do revestimento 28 6.7.2 Aderência do revestimento 28 6.7.3 Continuidade e uniformidade do revestimento 28 6.7.4 Massa por unidade de superfície e espessura do revestimento 28 6.7 MARCAÇÃO 30 8 FABRICAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.1 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 43	6.3		
6.6 Dimensões e tolerâncias dos componentes das armações 22 6.7 Revestimento de superfície 27 6.7.1 Aspeto de superfície do revestimento 28 6.7.2 Aderência do revestimento 28 6.7.3 Continuidade e uniformidade do revestimento 28 6.7 Massa por unidade de superfície e espessura do revestimento 28 7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 33 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 38 12.1.2 Parafusos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 </td <td></td> <td></td> <td></td>			
6.7 Revestimento de superfície 27 6.7.1 Aspeto de superfície do revestimento 28 6.7.2 Aderência do revestimento 28 6.7.3 Continuidade e uniformidade do revestimento 28 6.7.4 Massa por unidade de superfície e espessura do revestimento 28 7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furção 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1 Ensaios de tipo 38 12.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 44 12.1.2.2 Parafusos 44 12.2.1 Ensaios sobr		•	
6.7.1 Aspeto de superfície do revestimento 28 6.7.2 Aderência do revestimento 28 6.7.3 Continuidade e uniformidade do revestimento 28 6.7.4 Massa por unidade de superfície e espessura do revestimento 28 7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1 Ensaios de tipo 38 12.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.1 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 43 12.1.2.4 Anilhas 45 12.1.2 Ensaios de receção			
6.7.2 Aderência do revestimento 28 6.7.3 Continuidade e uniformidade do revestimento 28 6.7.4 Massa por unidade de superfície e espessura do revestimento 28 7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1 Ensaios de tipo 38 12.1.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 43 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.2 Ensaios de receção 46 <td></td> <td>·</td> <td></td>		·	
6.7.3 Continuidade e uniformidade do revestimento 28 6.7.4 Massa por unidade de superfície e espessura do revestimento 28 7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1 Ensaios de tipo 38 12.1.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Pernos 38 12.1.2 Pernos 41 12.1.2.1 Pernos 41 12.1.2.2 Paraúsos 43 12.1.2.3 Porcas 44 12.1.2 Ensaios sobre estribos 45 12.2 Ensaios sobre estribos 45 12.2.1 Ensaios de receção			
6.7.4 Massa por unidade de superfície e espessura do revestimento 28 7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 38 12.1.1 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.2.5 Ensaios sobre estribos 45 12.2.6 Generalidades 46	-		
7 MARCAÇÃO 30 8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1.1 Ensaios de tipo 38 12.1.2.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2.1 Pernos 41 12.1.2.1. Pernos 41 12.1.2.2 Parafusos 41 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2.1 Ensaios sobre estribos 45 12.2.2 Ensaios de receção 46 12.2.1 Ensaios sobre estribos 45 12.2.1 Ensaios sobre estribos 45 <t< td=""><td>-</td><td></td><td></td></t<>	-		
8 FABRICAÇÃO 31 8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1 Ensaios de tipo 38 12.1.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.3 Ensaios sobre estribos 45 12.1 Ensaios de receção 46 12.2.1 Generalidades 46			
8.1 Desempeno 31 8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1.1 Ensaios de tipo 38 12.1.2 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.3 Ensaios sobre estribos 45 12.1.3 Ensaios de receção 46 12.2.1 Generalidades 46	7	•	
8.2 Forjamento 32 8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1 Ensaios de tipo 38 12.1.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Pernos 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46	8	•	
8.3 Corte 32 8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1 Ensaios de tipo 38 12.1.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Pernasios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46	8.1		
8.4 Furação 33 8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1 Ensaios de tipo 38 12.1.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46	8.2	<i>,</i>	
8.5 Galvanização 34 9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1.1 Ensaios de tipo 38 12.1.2 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 41 12.1.2.3 Porcas 43 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46			
9 EMBALAGEM 35 10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1 Ensaios de tipo 38 12.1.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46			
10 ETIQUETAGEM 36 11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1.1 Ensaios de tipo 38 12.1.2 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46		•	
11 LIGAÇÕES SOLDADAS 37 12 ENSAIOS 38 12.1 Ensaios de tipo 38 12.1.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46	9		
12 ENSAIOS 38 12.1 Ensaios de tipo 38 12.1.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46	10	·	
12.1 Ensaios de tipo 38 12.1.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46	11	•	
12.1.1 Ensaios sobre elementos estruturais (perfis, barras e chapas) 39 12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46			
12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas) 41 12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46		·	
12.1.2.1 Pernos 41 12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46		1 /	
12.1.2.2 Parafusos 43 12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46			
12.1.2.3 Porcas 44 12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46			
12.1.2.4 Anilhas 45 12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46			
12.1.3 Ensaios sobre estribos 45 12.2 Ensaios de receção 46 12.2.1 Generalidades 46			
12.2 Ensaios de receção 46 12.2.1 Generalidades 46	12.1.3		
12.2.1 Generalidades 46	12.2		
12.2.2 Ensaios a realizar à armação	12.2.1	·	
	12.2.2	Ensaios a realizar à armação	47

_		. ~		_	_	•	~		_
⊢	~ I	icã	\sim	•	Re	\/I	ca	\sim	7
_	ч	ıca	v.	_	116	VI.	3a	v.	_

12.2.3	Ensaios a realizar aos elementos estruturais	48
12.2.4	Ensaios a realizar aos elementos estruturais Ensaios a realizar aos pernos	48
12.2.5	Ensaios a realizar aos parafusos	49
12.2.6	Ensaios a realizar às porcas	50
12.2.7	Ensaios a realizar às anilhas	52
12.2.8	Ensaios a realizar aos estribos	52
12.3	Ensaios em curso de fabricação	52
ANEXO	A	53
ANEXO	В	54
ANEXO	C	63
ANEXO	D	64
ANEXO	E	64
ANEXO	F	67
ANEXO	G	8
ΔΝΕΧΟ	Н	91

ÍNDICE DE QUADROS

ÍNDICE DE QUADROS	4
QUADRO 1 ARMAÇÕES PARA POSTES DE BETÃO DE MT	7
QUADRO 2 COMPONENTES DAS ARMAÇÕES DE MT	18
QUADRO 3 MATERIAIS CONSTITUINTES DOS COMPONENTES DAS ARMAÇÕES DE MT	21
QUADRO 4 TOLERÂNCIAS DIMENSIONAIS E DE FORMA DOS COMPONENTES DAS ARMAÇÕES DE MT	23
QUADRO 5 MASSAS E ESPESSURA DE REVESTIMENTO	29
QUADRO 6 FOLGAS NOMINAIS PARA PARAFUSOS	34
QUADRO 7 BINÁRIOS DE APERTO EM FUNÇÃO DO DIÂMETRO DOS PERNOS	42
QUADRO 8 BINÁRIOS DE APERTO EM FUNÇÃO DO DIÂMETRO DOS PARAFUSOS	44
QUADRO 9 BINÁRIOS DE APERTO EM FUNÇÃO DO DIÂMETRO DOS ESTRIBOS	46
QUADRO 10 BINÁRIOS DE APERTO EM FUNÇÃO DO DIÂMETRO DOS PERNOS	49
QUADRO 11 BINÁRIOS DE APERTO EM FUNÇÃO DO DIÂMETRO DOS PARAFUSOS	50
QUADRO 12 BINÁRIOS DE APERTO EM FUNÇÃO DO DIÂMETRO DOS ESTRIBOS	52
QUADRO B.1- ENSAIOS SOBRE ELEMENTOS ESTRUTURAIS	54
QUADRO B.2- ENSAIOS SOBRE ELEMENTOS DE LIGAÇÃO - PERNOS	56
QUADRO B.3- ENSAIOS SOBRE ELEMENTOS DE LIGAÇÃO - PARAFUSOS	58
QUADRO B.4- ENSAIOS SOBRE ELEMENTOS DE LIGAÇÃO - PORCAS	59
QUADRO B.5- ENSAIOS SOBRE ELEMENTOS DE LIGAÇÃO - ANILHAS	60
QUADRO B.6- ENSAIOS SOBRE ELEMENTOS DE LIGAÇÃO - ESTRIBOS	61
QUADRO C.1 DESIGNAÇÃO (CODIFICAÇÃO) DOS COMPONENTES DAS ARMAÇÕES DE MT	63
QUADRO D.1 GAMA DE APLICAÇÕES DE ARMAÇÕES DE MT	64
QUADRO E.1 QUADRO SÍNTESE DE APLICAÇÃO DAS ARMAÇÕES DE MT	66
QUADRO F.1 MASSAS (APROXIMADAS) DAS ARMAÇÕES DE MT	67
QUADRO F.2 ELEMENTOS ESTRUTURAIS DAS ARMAÇÕES DE MT- QUANTIDADE	69
QUADRO F.3 ELEMENTOS DE LIGAÇÃO E FIXAÇÃO DAS ARMAÇÕES DE MT – QUANTIDADE	70
QUADRO F.4 MASSA TOTAL (APROXIMADA) DOS PERNOS COM PORCAS E ANILHAS POR ARMAÇÃO E POSTE (kg)	73
QUADRO F.5 MASSA TOTAL (APROXIMADA) DOS PARAFUSOS COM PORCA E ANILHAS POR ARMAÇÃO (kg)	75
QUADRO F.6 MASSA TOTAL (APROXIMADA) DOS ESTRIBOS COM PORCAS E ANILHAS POR ARMAÇÃO (kg)	77
QUADRO F.7 MATERIAIS DOS COMPONENTES DAS ARMAÇÕES DE MT	79
QUADRO G.1 PERNOS A ASSOCIAR A CADA TIPO DE ARMAÇÃO (POSTES DE BETÃO DE MT: 400 daN-1600 daN)	81
QUADRO G.2 PERNOS A ASSOCIAR A CADA TIPO DE ARMAÇÃO (POSTES DE BETÃO DE MT: 2250 daN-9000 daN)	86
QUADRO H.1 DESIGNAÇÕES ANTERIORES E NOVAS DESIGNAÇÕES DAS PEÇAS DESENHADAS E RELAÇÃO DOS FICHEIROS CAD DAS ARMAÇÕES DE MT	

0 INTRODUÇÃO

O presente documento normaliza as armações de aço a associar a postes de betão para a constituição de apoios a utilizar no estabelecimento de linhas elétricas aéreas de Média Tensão - 10 kV, 15 kV e 30 kV - da EDP Distribuição.

As alterações efetuadas na presente versão, em relação à anterior, dizem respeito a:

- Introdução das seguintes armações de MT: GAN1, GAL1, TAN 80, HAL-A2S, HRFSC com BI 75, HRFSC3;
- Introdução das novas armações de MT: BI 75, BInf-GAL1 e BInf-GAN1, anteriormente consideradas apenas como ferragens;
- Eliminação das armações TAL e VAL;
- Eliminação das armações aplicadas em poste de betão de AT EVDAL e EVDAN;
- Eliminação da referência "EDP" da armação de MT HRFSC;
- Introdução da nova componente de MT: OEV-R16;
- Revisão das peças desenhadas das armações de MT;
- Revisão das dimensões dos pernos a utilizar nas armações de MT, com o objetivo da redução do número de pernos e sua uniformização;
- Revisão das dimensões dos estribos a utilizar nas armações de MT, com o objetivo da sua uniformização;
- Revisão das dimensões dos parafusos de ligação à terra a utilizar nas armações de MT, com o objetivo da sua uniformização;
- Alteração da designação das peças desenhadas das armações de MT;
- Introdução de novas designações dos componentes das armações de MT;
- Introdução da obrigatoriedade da marcação CE nas armações de MT;
- Introdução de novos capítulos: "Termos e definições" e "Ligações soldadas";
- Introdução de um índice de quadros;
- Atualização dos quadros 1 e 2;
- Alteração dos materiais a utilizar nas armações de MT, com introdução de um quadro com sua indicação;
- Introdução de quadro indicativo das dimensões e tolerâncias dos componentes constituintes das armações de MT;
- Alteração dos valores de revestimento de superfície por galvanização por imersão a quente;
- Alteração e atualização da marcação dos componentes das armações de MT;
- Eliminação da marcação dos pernos;
- Eliminação da obrigatoriedade da marcação dos estribos;
- Introdução de novo tipo de embalagem para os elementos de ligação e fixação;
- Introdução, na embalagem, de um código SAP da EDP Distribuição para cada armação;
- Introdução, na embalagem, de um código de barras associado ao código SAP para cada armação;
- Introdução, nos ensaios de tipo, de ensaios às ligações soldadas: inspeção visual, ensaios com recurso a líquidos penetrantes e/ou partículas magnéticas e exames radiográficos;
- Eliminação, nos ensaios de tipo, de ensaios aos pernos: verificação da classe de qualidade e da marca identificadora do fabricante;
- Introdução, nos ensaios de tipo, dos ensaios sobre os estribos (resistência à tração), verificação de aperto e verificação de binários de aperto;
- Eliminação, nos ensaios de tipo, dos ensaios às anilhas: verificação da classe de qualidade, da marca identificadora do fabricante, verificação da geometria e dimensões das partes lisas e roscadas, passo de rosca;
- Alteração dos ensaios de receção a efetuar nas armações de MT;
- Eliminação, nos ensaios de receção, de ensaios de dureza das anilhas;
- Eliminação das placas de identificação;

- Eliminação dos ensaios de tipo e de receção das placas de identificação;
- Eliminação dos desenhos das armações de MT dos anexos, incluindo ferragens e acessórios de fixação e ligação e criação de um catálogo digital;
- Atualização das massas das armações de MT;
- Atualização das massas dos componentes das armações de MT;
- Inserção de uma ficha característica para cada armação de MT;
- Eliminação dos anexos A, B, C, E1, G, H, I e J da versão anterior do presente documento;
- Inserção de novos anexos e atualização de anexos no documento: ensaios sobre elementos estruturais; quadro de ensaios sobre elementos de ligação pernos; ensaios sobre elementos de ligação parafusos; ensaios sobre elementos de ligação porcas; ensaios sobre elementos de ligação anilhas; ensaios sobre elementos de ligação estribos; designação (codificação) dos componentes das armações de MT; gama de aplicações de armações de MT; quadro síntese de aplicação das armações de MT massas (aproximadas) das armações de MT; elementos estruturais das armações de MT quantidade; elementos de ligação e fixação das armações de MT quantidade; massa total (aproximada) dos pernos com porcas e anilhas por armação e poste; massa total (aproximada) dos parafusos com porca e anilhas por armação; massa total (aproximada) dos estribos com porcas e anilhas por armação; materiais dos componentes das armações de MT; quadro resumo dos pernos a associar a cada armação de MT; designações anteriores e novas designações das peças desenhadas e relação dos ficheiros CAD das armações de MT;
- Revisão de conteúdos do documento em alinhamento com as normas em vigor.

As armações aplicadas em postes de betão de linhas MT são constituídas por dezasseis tipos de armações que englobam um total de vinte e nove armações (Quadro 1).

No contexto da presente especificação, as armações com uma geometria semelhante (por exemplo, GAN 80 e GAN 120) são consideradas armações do mesmo tipo (ver primeira e segunda colunas do Quadro 1 da secção 2 do presente documento).

No presente documento, o Quadro 2 apresenta os componentes das armações a aplicar em postes de betão de linhas MT, acessórios de ligação e acessórios de fixação.

1 OBJETO

O presente documento trata de características das armações de aço para aplicação em postes de betão de MT e dos ensaios de comprovação dessas características.

2 CAMPO DE APLICAÇÃO

O presente documento é aplicável às vinte e nove armações de aço indicadas na segunda coluna do Quadro 1, para aplicação em postes de betão de MT. Dada a semelhança entre algumas armações, estas armações foram agrupadas em dezasseis tipos.

No Quadro 1 mencionam-se os referidos dezasseis tipos de armações, as referências das armações, a aplicação de cada tipo de armação, a disposição dos condutores e o tipo de fixação dos condutores.

Quadro 1 Armações para postes de betão de MT

Almações para postes de betao de Mi						
Tipo de armação	Ref.ª EDP Distribuição da armação	Aplicação da armação	Disposição dos condutores	Tipo de fixação dos condutores	Número de armações de cada tipo	
TAN	TAN 60 TAN 80 TAN 120	Ângulo/Reforço/Fim de linha	Triângulo	Amarração	3	
GAL	GAL	Alinhamento	Galhardete	Suspensão	1	
GAL1	GAL1	Alinhamento	Galhardete	Suspensão	1	
BInf-GAL1	BInf-GAL1	Alinhamento	Galhardete	Suspensão	1	
GAN	GAN 80 GAN 120	Ângulo	Galhardete	Amarração	2	
GAN1	GAN1 80 GAN1 100 GAN1 120	Ângulo	Galhardete	Amarração	3	
BInf-GAN1	BInf-GAN1 80 BInf-GAN1 100 BInf-GAN1 120	Ângulo	Galhardete	Amarração	3	
ВІ	BI 75	-	-	Suspensão	1	
HAL-A2S	HAL-A2S	Alinhamento	Esteira horizontal	Suspensão (2) e Amarração (1)	1	
HTP4	HTP4	Posto de transformação aéreo TP4	Esteira horizontal	Amarração	1	
VAN	VAN	Ângulo/Reforço/Fim de linha	Esteira vertical	Amarração	1	
PAL	PAL	Alinhamento	Pórtico	Suspensão	1	
PAN	PAN	Ângulo/Reforço/Fim de linha	Pórtico	Amarração	1	
HRFSC	HRFSC 80 HRFSC 100 HRFSC 120	Alinhamento/Ângulo/ Reforço (poste c/seccionador horizontal ou vertical) Fim de linha (poste c/seccionador vertical)	Esteira horizontal	Amarração	3	
HRFSC com BI 75	HRFSC 80 c/ BI 75 HRFSC 100 c/ BI 75 HRFSC 120 c/ BI 75	Alinhamento/Ângulo/Reforço	Esteira horizontal	Amarração	3	

Tipo de armação	Ref.ª EDP Distribuição da armação	Aplicação da armação	Disposição dos condutores	Tipo de fixação dos condutores	Número de armações de cada tipo
HRFSC3	HRFSC3 100 HRFSC3 120 HRFSC3 140	Alinhamento/Ângulo/Reforço/ Fim de linha/Derivação	Esteira horizontal	Amarração	3

Nota 1: A BI 75 é considerada uma armação para fixação de 1 condutor (arco de ligação) por meio de uma cadeia de suspensão, em complemento da armação HRFSC.

Nota 2: A armação HTP4 é utilizada em postes de betão para PT aéreos (DMA- C67-212).

Nota 3: As armações dos tipos EVDAL e EVDAN (incluídas no DMA-C67-605) são aplicadas em postes de betão de AT, e podem ser utilizadas em linhas de MT e em linhas de AT.

3 DOCUMENTOS DE REFERÊNCIA

Para efeitos do presente documento são aplicáveis as normas seguintes:

3.1 Documentos EDP Distribuição

DMA-C66-901	Materiais para linhas aéreas (MT e AT) - Acessórios para cadeias de isoladores e fixação de cabos de guarda.
DMA-C67-605	Materiais para linhas aéreas - Armações de aço para postes de betão de AT.
DMA-C67-215	Apoios para linhas aéreas - Postes de betão para redes de MT. Características e ensaios.
DMA-C67-225	Apoios para linhas aéreas - Postes de betão para redes de AT (60kV).
DMA-C67-212	Apoios para linhas aéreas - Postes de betão para PT aéreos.

3.2 Normas europeias

NP 525	1988	Produtos zincados. Determinação da massa por unidade de superfície e da espessura média do revestimento.
NP 526	1988	Produtos zincados. Verificação da aderência do revestimento.
NP 527	1988	Produtos zincados. Verificação da uniformidade do revestimento.
NP EN 1011-2+A1	2008	Soldadura; Recomendações para a soldadura de materiais metálicos; Parte 2: Soldadura por arco de aços ferríticos.
NP EN 1011- 2+A1:2008/Errata 1	2013	Soldadura; Recomendações para a soldadura de materiais metálicos; Parte 2: Soldadura por arco de aços ferríticos.
NP EN 1090- 2:2008+A1	2015	Execução de estruturas de aço e de estruturas de alumínio- Parte 2: Requisitos técnicos para estruturas de aço.
NP EN 1993-1-1	2010	Eurocódigo 3 – Projecto de estruturas de aço - Parte 1-1 : Regras gerais e regras para edifícios.
NP EN 1993-1-8	2010	Eurocódigo 3 – Projecto de estruturas de aco - Parte 1-8 : Projecto de ligações.

NP EN 10020	2002	Definição e classificação dos aços.
NP EN 10021	2016	Condições técnicas gerais de fornecimento para produtos de aço.
NP EN 10025-1	2014	Produtos laminados a quente de aços de construção; Parte 1: Condições técnicas gerais de fornecimento.
NP EN 10025- 1:2014/Errata 1	2016	Produtos laminados a quente de aços de construção; Parte 1: Condições técnicas gerais de fornecimento.
NP EN 10025-2	2007	Produtos laminados a quente de aços de construção; Parte 2: Condições técnicas de fornecimento para aços de construção não ligados.
NP EN 10029	2016	Chapas de aço laminadas a quente, de espessura igual ou superior a 3 mm; Tolerâncias nas dimensões e de forma.
NP EN 10056-2	1998	Cantoneiras de abas iguais e desiguais de aço de construção. Parte 2: Tolerâncias de forma e dimensões.
NP EN 10058	2012	Barras retangulares de aço laminadas a quente para aplicações gerais; Dimensões e tolerâncias na forma e dimensões.
NP EN 10060	2012	Varões de aço laminados a quente para aplicações gerais; Dimensões e tolerâncias na forma e nas dimensões.
NP EN 10083-2	2012	Aços para têmpera e revenido; Parte 2: Condições técnicas de fornecimento para aços não ligados.
NP EN 10204	2009	Produtos metálicos; Tipos de documentos de inspecção.
NP EN 10279	2008	Perfis em U de aço laminados a quente; Tolerâncias na forma, nas dimensões e na massa.
NP EN ISO 225	2013	Elementos de fixação; Parafusos, pernos e porcas; Símbolos e descrição de dimensões (ISO 225:2010).
NP EN ISO 887	2013	Anilhas planas para parafusos e porcas métricos para usos gerais; Plano geral (ISO 887:2000 + Cor 1:2006).
NP EN ISO 1460	1997	Revestimentos metálicos. Revestimentos zincados por imersão a quente sobre materiais ferrosos. Determinação gravimétrica de massa por unidade de superfície.
NP EN ISO 1461	2012	Revestimentos de zinco por imersão a quente sobre produtos acabados de ferro e aço; Especificações e métodos de ensaio (ISO 1461:2009).
NP EN ISO 3506-1	2013	Propriedades mecânicas de elementos de fixação em aço inoxidável resistente à corrosão; Parte 1: Parafusos e pernos (ISO 3506-1:2009)
NP EN ISO 3506- 1:2013/Errata 1	2013	Propriedades mecânicas de elementos de fixação em aço inoxidável resistente à corrosão; Parte 1: Parafusos e pernos (ISO 3506-1:2009)
NP EN ISO 3452-1	2016	Ensaios não destrutivos; Ensaio por líquidos penetrantes; Parte 1: Princípios gerais (ISO 3452-1:2013).
NP EN ISO 3834-1	2015	Requisitos da qualidade na soldadura por fusão dos materiais metálicos; Parte 1: Critérios para a seleção do nível apropriado dos requisitos da qualidade (ISO 3834-1:2005).
NP EN ISO 3834-3	2016	Requisitos da qualidade na soldadura por fusão dos materiais metálicos; Parte 3: Requisitos da qualidade normal; (ISO 3834-3:2005).
NP EN ISO 3834-4	2016	Requisitos da qualidade na soldadura por fusão dos materiais metálicos; Parte 4: Requisitos da qualidade elementar; (ISO 3834-4:2005).
NP EN ISO 3834-5	2016	Requisitos da qualidade na soldadura por fusão dos materiais metálicos; Parte 5: Documentos com os quais é necessário estar conforme para declarar a conformidade com os requisitos da qualidade da ISO 3834-2, ISO 3834-3 ou ISO 3834-4 (ISO 3834-5:2015).

NP EN ISO 4014	2013	Parafusos de cabeça hexagonal parcialmente roscados; Graus A e B (ISO 4014:2011).
NP EN ISO 4063	2015	Soldadura e processos afins; Nomenclatura dos processos e números de referência (ISO 4063:2009, Corrected version 2010-03-01).
NP EN ISO 4753	2013	Elementos de fixação; Extremidades de elementos com rosca exterior métrica ISO (ISO 4753:2011).
NP EN ISO 4759-1	2013	Tolerâncias dos elementos de fixação; Parte 1: Parafusos, pernos e porcas; Graus A, B e C (ISO 4759-1:2000).
NP EN ISO 5817	2017	Soldadura; Juntas soldadas por fusão em aço, níquel, titânio e suas ligas (soldadura por feixe excluída); Níveis da qualidade para as imperfeições (ISO 5817:2014).
NP EN ISO 6520-1	2013	Soldadura e processos afins; Classificação das imperfeições geométricas em materiais metálicos; Parte 1: Soldadura por fusão (ISO 6520-1:2007).
NP EN ISO 7089	2008	Anilhas planas; Série normal; Grau A (ISO 7089:2000).
NP EN ISO 9001	2015	Sistemas de Gestão da Qualidade; Requisitos (ISO 9001:2015).
NP EN ISO 9692-2	2000	Soldadura e processos afins; Preparação de juntas; Parte 2: Soldadura de aços por arco submerso (ISO 9692-2:1998); a versão EN ISO 9692-2:1998 tem título em português.
EN ISO 9692- 2:1998/AC	1999	Welding and allied processes – Joint preparation – Part 2: Submerged arc welding of steels (ISO 9692-2:1998).
NP EN ISO 10684	2013	Elementos de fixação; Revestimentos por galvanização a quente (ISO 10684:2004 + Cor 1:2008).
NP EN ISO 15607	2008	Especificação e qualificação de procedimentos de soldadura para materiais metálicos; Regras gerais (ISO 15607:2003).
NP EN ISO 15609-1	2008	Especificação e qualificação de procedimentos de soldadura para materiais metálicos; Especificação do procedimento de soldadura; Parte 1: Soldadura por arco (ISO 15609-1:2004).
NP EN ISO 15609-2	2017	Especificação e qualificação de procedimentos de soldadura para materiais metálicos; Especificação de procedimento de soldadura; Parte 2: Soldadura por gás (ISO 15609-2:2001).
EN ISO 15609- 2:2001/A1	2003	Specification and qualification of welding procedures for metallic materials – Welding procedure specification – Part 2: Gas welding (ISO 15609-2:2003).
NP EN ISO 15610	2008	Especificação e qualificação de procedimentos de soldadura para materiais metálicos; Qualificação baseada em consumíveis de soldadura ensaiados (ISO 15610:2003).
NP EN ISO 15613	2008	Especificação e qualificação de procedimentos de soldadura para materiais metálicos; Qualificação baseada numa prova de pré-produção (ISO 15613:2004).
NP EN ISO 17638	2017	Ensaios não destrutivos das soldaduras; Ensaio por magnetoscopia; (ISO 17638:2016).
NP EN ISO 23277	2018	Ensaios não destrutivos de soldaduras; Ensaio de Líquidos Penetrantes de soldaduras; Níveis de aceitação (ISO/DIS 23277:2013).
NP EN ISO 23278	2016	Ensaios não destrutivos de soldaduras; Ensaio de Partículas Magnéticas de soldaduras; Níveis de aceitação (ISO/DIS 23278:2013).
NP ISO 68-1	2007	Roscas ISO para usos gerais; Perfil de base; Parte 1: Roscas métricas.
NP ISO 8992	2013	Elementos de fixação; Requisitos gerais para parafusos, pernos e porcas.

DIN 127	1987-10	Spring lock washers with square ends or tang ends (norma anulada).
DIN 267-2	2017-06	Fasteners - Technical specification, surface roughness for product classes A and B.
DIN 267-24	2007-10	Fasteners- Technical delivery conditions – Part 24: Hardness classes for nuts without specified proof load values.
DIN 1026-1	2009-09	Hot rolled steel channels - Part 1: Taper flange steel channels - Dimensions, masses and sectional properties.
DIN 7989-2	2001-04	Washers for steel structures- Part 2: Product grade A.
DIN 7990	2017-08	Hexagon head bolts with hexagon nut for steel structures.
DIN 4000-160	2007-02	Tabular layout of product properties - Part 160: Fasteners with external thread.
DIN 4000-162	2017-05	Tabular layout of properties – Part 162: Washers and rings.
DIN 50933	2015-08	Measurement of coating thickness – Measurement of the thickness of coatings by difference measurement using stylus instrument.
EN 1011-1	2009	Welding. Recommendations for welding of metallic materials – Part 1: General guidance for arc welding.
EN 1179	2003	Zinc and zinc alloys. Primary zinc.
EN 10027-1	2016	Designation systems for steels - Part 1: Steel names.
EN 10027-2	2015	Designation systems for steels - Part 2: Numerical system.
EN 10056-1	2017	Structural steel equal and unequal leg angles - Part 1: Dimensions.
EN 10365	2017	Hot rolled steel channels, I and H sections - Dimensions and masses.
EN 13479	2017	Consumíveis de soldadura; Norma geral de produto para metais de adição e fluxos para soldadura por fusão de materiais metálicos.
EN 15048-1	2016	Non-preloaded structural bolting assemblies - Part 1: General requirements.
EN 15048-2	2016	Non-preloaded structural bolting assemblies - Part 2: Fitness for purpose.
EN 22768-1	1993	General tolerances - Part 1: Tolerances for linear and angular dimensions without individual tolerance indications (ISO 2768-1:1989).
EN 50341-1	2012	Overhead electrical lines exceeding AC 1 kV – Part 1: General requirements- Common specifications.
EN ISO 148-1	2016	Metallic materials - Charpy pendulum impact test - Part 1: Test method (ISO 148-1:2016).
EN ISO 683-1	2018	Heat-treatable steels, alloy steels and free-cutting steels - Part 1: Non-alloy steels for quenching and tempering (ISO 683-1:2016).
EN ISO 2178	2016	Non-magnetic coatings on magnetic substrates - Measurement of coating thickness - Magnetic method (ISO 2178:2016).
EN ISO 3834-2	2005	Quality requirements for fusion welding of metallic materials - Part 2: Comprehensive quality requirements (ISO 3834-2:2005).
EN ISO 4759-3	2016	Tolerances for fasteners - Part 3: Washers for bolts, screws and nuts - Product grades A, C and F.

EN ISO 6892-1	2016	Metallic materials - Tensile testing - Part 1: Method of test at room temperature.
EN ISO 9606-1	2017	Ensaios de qualificação de soldadores; Soldadura por fusão; Parte 1: Aço (ISO 9606-1:2012 including Cor 1:2012 and Cor 2:2013).
EN ISO 9692-1	2013	Soldadura e processos afins; Tipos de preparação de juntas; Parte 1: Soldadura manual por arco com elétrodo revestido, soldadura por arco com elétrodo consumível sob proteção gasosa, soldadura a gás, soldadura TIG e soldadura por feixes de alta densidade de aços (ISO 9692-1:2013).
EN ISO 10289	2001	Methods for corrosion testing of metallic and other inorganic coatings on metallic substrates - Rating of test specimens and manufactured articles subjected to corrosion tests (ISO 10289:1999).
EN ISO 10675-1	2016	Non-destructive testing of welds – Acceptance levels for radiographic testing - Part 1: Steel, nickel, titanium and their alloys (ISO 10675-1:2016).
EN ISO 12679	2015	Thermal spraying; Recommendations for thermal spraying (ISO 12679:2011).
EN ISO 14732	2013	Welding personnel – Qualification testing of welding operators and weld setters for mechanized and automatic welding of metallic materials (ISO 14732:2013).
EN ISO 15609-3	2004	Specification and qualification of welding procedures for metallic materials – Welding procedures specification – Part 3: Electron beam welding (ISO 15609-3:2004).
EN ISO 15609-4	2009	Specification and qualification of welding procedures for metallic materials – Welding procedure specification – Part 4: Laser beam welding (ISO 15609-4:2009).
EN ISO 15609-5	2011	Especificação e qualificação de procedimentos de soldadura para materiais metálicos; Especificação do procedimento de soldadura; Parte 5: Soldadura por resistência. (ISO 15609-5:2011, Corrected version 2011-12-01).
EN ISO 15609-6	2013	Specification and qualification of welding procedures for metallic materials – Welding procedure specification – Part 6: Laser-arc hybrid welding (ISO 15609-6:2013).
EN ISO 15614-1	2017	Especificação e qualificação de procedimentos de soldadura para materiais metálicos; Prova de procedimento de soldadura; Parte 1: Soldadura por arco e gás de aços e soldadura por arco de níquel e suas ligas (ISO/FDIS 15614-1:2017).
EN ISO 17635	2016	Non-destructive testing of welds - General rules for metallic materials (ISO 17635:2016).
EN ISO 17636-1	2013	Non-destructive testing of welds - Radiographic testing — Part 1: X- and gamma-ray techniques with film (ISO 17636-1:2013).
EN ISO 17636-2	2013	Non-destructive testing of welds — Radiographic testing — Part 2: X- and gamma-ray techniques with digital detectors (ISO 17636-2:2013).
EN ISO 17637	2016	Non-destructive testing of welds – Visual testing of fusion-welded joints.
EN ISO 23277	2015	Ensaios não destrutivos de soldaduras; Ensaio de Líquidos Penetrantes de soldaduras; Níveis de aceitação (ISO/DIS 23277:2013).

3.3 Normas internacionais

IEC 61284	1997	Overhead lines - Requirements and tests for fittings.
IEC 61284:1997/Cor:1	1998	Corrigendum 1 - Overhead lines - Requirements and tests for fittings.

ISO 273	1979	Fasteners - Clearance holes for bolts and screws.
ISO 3269	2000	Fasteners - Acceptance inspection.
ISO 3506-2	2009	Mechanical properties of corrosion-resistant stainless steel fasteners Part 2: Nuts
ISO 4017	2014	Fasteners - Hexagon head screws - Product grades A and B.
ISO 4032	2012	Hexagon regular nuts (style 1) - Product grades A and B.
ISO 657-1	1989	Hot-rolled steel sections. Part 1: Equal-leg angles. Dimensions.
ISO 657-5	1976	Hot-rolled steel sections. Part 5: Equal-leg angles and unequal-leg angles. Tolerances for metric and inch series.
ISO 657-11	1980	Hot-rolled steel sections - Part 11: Sloping flange channel sections (Metric series) - Dimensions and sectional properties.
ISO 752	2004	Zinc ingots.
ISO 752:2004/Cor.1	2006	Zinc ingots.
ISO 898-1	2013	Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts, screws and studs with specified property classes - Coarse thread and fine pitch thread.
ISO 898- 1:2013/Cor:1	2013	Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts, screws and studs with specified property classes - Coarse thread and fine pitch thread.
ISO 898-2	2012	Mechanical properties of fasteners made of carbon steel and alloy steel - Part 2: Nuts with specified property classes - Coarse thread and fine pitch thread.
ISO 965-1	2013	ISO general purpose metric screw threads - Tolerances - Part 1: Principles and basic data.
ISO 2063-1	2017	Thermal spraying — Zinc, aluminium and their alloys - Part 1: Design considerations and quality requirements for corrosion protection systems.
ISO 2063-2	2017	Thermal spraying – Zinc, aluminium and their alloys – Part 2: Execution of corrosion protection systems.
ISO 8601	2004	Data elements and interchange formats - Information interchange - Representation of dates and times.
ISO/TS 9002	2016	Quality management systems Guidelines for the application of ISO 9001:2015.

Deve ser considerada a última versão das normas abrangidas pela presente especificação.

4 TERMOS E DEFINIÇÕES

No âmbito do presente documento são aplicáveis os termos e as definições.

4.1 Definições gerais

4.1.1 Arco de condutor

Troço de condutor destinado a assegurar a continuidade elétrica, sem esforço mecânico, entre dois troços de condutor de uma linha aérea.

4.1.2 Armação

Conjunto de elementos estruturais que garantem uma dada disposição geométrica dos condutores/cabos em relação ao apoio.

4.1.3 Amostra

Conjunto de armações selecionadas e aleatoriamente retiradas de um lote a rececionar para serem controladas.

4.1.4 Cabo de guarda

Cabo nu colocado, em regra, acima dos condutores de uma linha aérea e ligado à terra nos apoios.

4.1.5 Condutor

Elemento destinado à condução da corrente elétrica.

4.1.6 Dispositivos para proteção da avifauna

Conjunto de dispositivos com efeito dissuasor de pouso e nidificação, instalados sobre os apoios da rede, destinados à proteção da avifauna contra as eletrocussões.

4.1.7 Elemento/Componente

Cada peça individual constituinte da armação.

4.1.8 Elementos estruturais

Elementos com funções estruturais, tais como, perfis em U, cantoneiras em L, barras de secção retangular e chapas de fixação.

4.1.9 Elementos de ligação

Acessórios de ligação a elementos estruturais, tais como, pernos, parafusos, porcas, anilhas planas e de pressão ou de mola.

4.1.10 Elementos de fixação de condutores

Acessórios de fixação de condutores, tais como, as chapas, os estribos e as manilhas.

4.1.11 Ensaios de receção

Ensaios realizados pelo fabricante, normalmente em presença do cliente ou de uma terceira identidade, em sua representação, com o objetivo de verificar a conformidade de um fornecimento com a especificação técnica aplicável.

4.1.12 Ensaios de série

Ensaio realizado durante o ciclo de fabricação do produto, em qualquer das suas fases, tanto na forma de ensaio individual como na de ensaio sobre amostra, com o objetivo de verificar a conformidade com a especificação técnica respetiva, das características do produto supostas dependentes das variáveis previsíveis de uma produção industrial continuada.

4.1.13 Ensaios de tipo

Ensaio realizado sobre um pequeno número de produtos, representativos de uma produção industrial, com o objetivo de verificar a conformidade com a especificação técnica, de um certo número de características supostamente independentes das variações previsíveis de uma produção industrial continuada, sem alteração das condições de produção (nomeadamente matérias-primas, métodos e processo tecnológicos). O ensaio de tipo é realizado uma só vez, não devendo, em princípio, ser repetido, a não ser que verifiquem alterações qualitativas nas condições de produção.

4.1.14 Lote

Determinada quantidade de armações prontas para entrega, isto é, completamente fabricadas e embaladas, apresentadas ao mesmo tempo para controlo.

4.1.15 Não-conformidade

Desvio e/ou diferença encontrada num produto face aos requisitos estabelecidos.

4.1.16 Plano de amostragem

Plano que estabelece o tamanho da amostra a ser testada.

4.1.17 Tipo de componente

Conjunto de elementos iguais da armação.

4.1.18 Travessa

Principal elemento estrutural, linear e horizontal, das armações ou das estruturas de suporte de aparelhagem.

4.2 Definições das armações de MT

4.2.1 TAN

Armação com disposição em triângulo para amarração dos condutores em poste de ângulo (ou alinhamento).

4.2.2 GAL

Armação com disposição em galhardete para suspensão dos condutores em poste de alinhamento.

4.2.3 GAL1

Armação com disposição em galhardete para suspensão dos condutores em poste de alinhamento, a utilizar preferencialmente em zonas de presença de aves de pequeno porte.

4.2.4 BInf-GAL1

Armação para amarração do condutor inferior, utilizada em conjunto com os dois braços superiores da armação GAL, em poste de alinhamento, preferencialmente em zonas de presença de aves de pequeno porte.

4.2.5 GAN

Armação com disposição em galhardete para amarração dos condutores em poste de ângulo (ou alinhamento).

4.2.6 GAN1

Armação com disposição em galhardete para amarração dos condutores em poste de ângulo (ou alinhamento), a utilizar preferencialmente em zonas de presença de aves de pequeno porte.

4.2.7 BInf-GAN1

Armação para amarração do condutor inferior, utilizada em conjunto com os dois braços superiores da armação GAN, em poste de ângulo (ou alinhamento), preferencialmente em zonas de presença de aves de pequeno porte.

4.2.8 BI 75

Armação para suspensão de arco de condutor, utilizada com a armação HRFSC existente em todas as situações em que não há seccionador no poste, com furação para dispositivo dissuasor de nidificação e de pouso de aves.

4.2.9 HAL-A2S

Armação com disposição em esteira horizontal com amarração e suspensão dos condutores em poste de alinhamento, a utilizar preferencialmente em zona de presença de aves.

4.2.10 HTP4

Armação com disposição em esteira horizontal para amarração dos condutores para poste TP4 para posto de transformação aéreo AI ou R250 e A/AS ou R100.

4.2.11 VAN

Armação com disposição em esteira vertical para amarração dos condutores em poste de ângulo (ou alinhamento).

4.2.12 PAL

Travessa de pórtico para suspensão dos condutores em poste de alinhamento.

4.2.13 PAN

Travessa de pórtico para amarração dos condutores em poste de ângulo (ou alinhamento), reforço ou fim de linha.

4.2.14 HRFSC

Armação com disposição em esteira horizontal para amarração dos condutores em poste de alinhamento, ângulo ou reforço (poste com seccionador horizontal/vertical) ou para amarração dos condutores em poste fim de linha ou de derivação.

4.2.15 HRFSC com BI 75

Armação com disposição em esteira horizontal para amarração dos condutores em poste de alinhamento, ângulo ou reforço.

4.2.16 HRFSC3

Armação com disposição em esteira horizontal para amarração dos condutores em poste de alinhamento, ângulo, reforço, fim de linha ou derivação (poste com ou sem seccionador vertical), a utilizar preferencialmente em zona de presença de aves de pequeno porte.

5 ABREVIATURAS

No presente documento são usados os seguintes símbolos e abreviaturas:

R Requisito E Ensaio

CONS Requisito construtivo
LOGI Requisito logístico
MAT Requisito de material
MEC Requisito mecânico
TIPO Ensaio de tipo
SERIE Ensaio de série
RECE Ensaio de receção

6 CARACTERÍSTICAS DAS ARMAÇÕES

As armações são constituídas por elementos estruturais (perfis em U da série UPN, cantoneiras em L de abas iguais, barras de secção retangular e chapas), elementos de ligação (pernos, parafusos, porcas e anilhas planas e de pressão ou de mola), elementos de fixação de condutores (chapas e estribos) e dispositivos de proteção da avifauna. Nalgumas armações, as chapas de fixação desempenham simultaneamente funções estruturais (solidarização de perfis em U).

6.1 Marcação CE

Requisito	Descrição
R001 – CONS	Armações de MT – Marcação CE A marcação CE é obrigatória para as estruturas metálicas de aço, de acordo com o regulamento (EU) nº 305/2011 e a norma harmonizada EN 1090-1+A1. Aquando da apresentação de candidatura/proposta, o fabricante deve apresentar cópia do respetivo certificado de conformidade do controlo de produção em fábrica.

6.2 Referências das armações

Requisito	Descrição
R002 – CONS	Armações de MT - Quantificação O presente documento considera dezasseis tipos de armações (ver coluna 1 do Quadro 1 da secção 2), nos quais se encontram incluídas vinte e nove armações.

6.3 Desenhos das armações

Peças desenhadas das armações de MT Na fabricação das armações aplicadas em poste de betão de MT devem ser respeita desenhadas para cada armação, com a referência indicada no anexo H do presente	
R003 – CONS Cada peça desenhada é aplicável a um único tipo de armação, o qual poderá incluir o armações (ver Quadro 1). No anexo acima referido indicam-se as referências dos ficheiros CAD associados a capeças desenhadas das armações correspondentes. Os desenhos de execução	documento. uma ou mais ada uma das

6.4 Componentes das armações

Requisito	Descrição
R004 – CONS	Componentes utilizados no fabrico das armações de MT No contexto da presente especificação, as armações são constituídas por: — perfis em U da série UPN de acordo com as normas EN 10365, DIN 1026-1 e NP EN 10279; — cantoneiras em L de abas iguais, de acordo com EN 10056-1 e NP EN 10056-2; — barras de secção retangular de acordo com a norma NP EN 10058; — chapas de acordo com a norma NP EN 10029; — pernos de acordo com a norma NP EN 10060 (com porcas e anilhas planas); — parafusos (com porcas, anilhas planas e anilhas de pressão ou de mola); — estribos de acordo com a norma NP EN 10060 (com porcas e anilhas planas).
	Dos elementos referidos, os respeitantes a cada tipo de armação estão identificados com "x" no Quadro 2.

Requisito	Descrição
R005 – CONS	Chapas As chapas de 3 mm de espessura são utilizadas em dispositivos de proteção da avifauna.
R006 – CONS	Pernos Os pernos são de 16 mm de diâmetro, roscados apenas nas extremidades e cada perno é equipado com duas ou quatro porcas e duas ou quatro anilhas planas.
R007 – CONS	Parafusos, porcas e anilhas Os parafusos são de diâmetro M10, M12 e M16 . Cada parafuso é equipado com uma porca, uma anilha plana e uma anilha de pressão ou de mola.
R008 – CONS	Estribos Os estribos são de 16 mm de diâmetro, parcialmente roscados e cada estribo é equipado com seis porcas e quatro anilhas planas.
R009 – MEC	Componente OEV-R16 – Características O componente OEV-R16 é constituído por: — duas cantoneiras em L de abas iguais com dimensões 100x100x10 mm, de acordo com as normas EN 10056-1 e NP EN 10056-2; — dois parafusos M12 parcialmente roscados de acordo com a norma DIN 7990, com dimensões M12x40x20 (Parafuso M12 com 40 mm de espiga e 20 mm de parte roscada). Cada parafuso é equipado com uma porca de acordo com a norma ISO 4032, uma anilha plana de acordo com a norma NP EN ISO 7089 e uma anilha de pressão ou de mola de acordo com a norma DIN 127. — uma manilha direita com cavilha com espessura de 16 mm, abertura de 24 mm e comprimento de 98 mm. A força de rotura é de 120 kN; A manilha deve ser qualificada pela EDP (com o código SAP da EDP Distribuição 20144350), com as características acima especificadas e em conformidade com a norma IEC 61284. A montagem do componente OEV-R16 deve ser realizada em fábrica. Este componente deve, ainda, incluir uma ferragem de ligação à terra e um parafuso M10 totalmente roscado de acordo com a norma ISO 4017, com espiga de 50 mm equipado com uma porca de acordo com a norma ISO 4032, uma anilha plana de acordo com a norma NP EN ISO 7089 e uma anilha de pressão ou de mola de acordo com a norma DIN 127.

Quadro 2 Componentes das armações de MT

									Ar	maçõ	ies de	мт						
Componentes das armações de MT	Dimensões (mm)	Referência do componente (*)	TAN	GAL	GAL1	Binf-GAL1 ^(**)	GAN	GAN1 ^(**)	Binf-GAN1(**)	BI(**)	HAL-A2S	HTP4(**)	VAN	PAL ^(*)	PAN ^(**)	HRFSC ^(**)	HRFSC com BI 75(**)	HRFSC3 ^(**)
Perfis em U	65	UPN65		Х	Х	Х												

									Ar	maçõ	ões de	e MT						
Componentes das armações de MT	Dimensões (mm)	Referência do componente (*)	TAN	GAL	GAL1	BInf-GAL1 ^(**)	GAN	GAN1 ^(**)	Binf-GAN1 ^(**)	BI(**)	HAL-A2S	HTP4 ^(**)	VAN	PAL ^(*)	PAN(**)	HRFSC(**)	HRFSC com BI 75(**)	HRFSC3(**)
(UPN)	100	UPN100									х			Х				
	50x50x5	L50x50x5			х	х		х	х									
	60x60x6	L60x60x6	х									Х						
	75x75x8	L75x75x8								Х								
	80x80x8	L80x80x8	Х				Х	Х	Х							х	х	
Cantoneiras em L de abas iguais	100x100 x10	L100x100 x10						х	х						х	х	х	х
	120x120 x12	L120x120 x12	x				x	x	x							x	х	х
	140x140 x14	L140x140 x14																х
	50x6	Br50x6		х	Х	Х	х	х	х			Х						
Barra	60x6	Br60x6									х							
retangular	80x8	Br80x8										Х		Х				
	120x10	Br120x10	Х									Х			Х	Х	Х	Х
Chapas	3	CH3									х							
Pernos com duas porcas e duas anilhas planas	M16	P16-C(100)+ P(2)+AP(2)	х	х	х	х	х	Х	х	х		x	х	х	X	Х	x	x
Pernos com quatro porcas e quatro anilhas planas	M16	P16-C(100)+ P(4)+AP(4)	х		х	х	х	х	х		х				х	х	x	х
	M12	M12x35x20 +P(1)+AP(1) +AM(1)			x	x		x	x									
Parafusos parcialmente roscado com		M16x35x25 +P(1)+AP(1) +AM(1)		х	х	х						х						
uma porca, uma anilha plana e uma anilha de	M16	M16x40x25 +P(1)+AP(1) +AM(1)																х
pressão ou de mola		M16x45x25 +P(1)+AP(1) +AM(1)									х					х	х	
		M16x50x25 +P(1)+AP(1) +AM(1)																х

									Ar	maçĉ	ies de	MT						
Componentes das armações de MT	Dimensões (mm)	Referência do componente (*)	TAN	GAL	GAL1	Binf-GAL1 ^(**)	GAN	GAN1(**)	Binf-GAN1(**)	BI(**)	HAL-A2S	HTP4(**)	VAN	PAL ^(*)	PAN(**)	HRFSC ^(**)	HRFSC com BI 75 ^(**)	HRFSC3(**)
Parafuso totalmente roscado com uma porca, uma anilha plana e uma anilha de pressão ou de mola	M10	M10x35+ P(1)+AP(1) +AM(1)	x	x	x	х	х	х	x	х	x	х	x	x	x	х	x	x
Anilhas	50x50x6	AQ50x6	Х	Х	Х	Х		Х	Х	Х			Х	Х			х	
quadradas	100x100x 12	AQ100x12									х							
Estribos com	M16; 140	QZ16-140- 70	х				х	х	х	х		х	х		х	х	Х	
seis porcas e quatro anilhas	M16; 190	QZ16-190- 70		х	х	х												х
planas	M16; 235	QZ16-235- 70									х			х				
Gancho com uma porca e uma anilha plana	M16	GZ16-123-39																x
BI ^(**)	-	B160	Х										х					
Di	-	B175															х	
OEV-R16	-	OEV-R16	Х								Х		Х				_	
Ferragem FLT (ligação à terra)	40x25x3	FLT40x25x3	х	х	х	х	х	х	х	х	х	х	х	х	х	х	x	х

^{*} A designação (codificação) dos componentes está descrita no Anexo C.

Nota 1: Os parafusos indicados, no presente documento, no Quadro 2 estão em concordância com a norma DIN 7990, embora o comprimento da parte roscada indicada na referida norma seja: M12-20.5 mm e M16-24.5 mm, com exceção dos parafusos M10.

6.5 Materiais das armações

Requisito	Descrição
R010 – MAT	Materiais
KUIU – WIAT	Os aços utilizados na fabricação dos perfis, barras, chapas, pernos, parafusos, estribos, porcas e anilhas devem ser conformes com as normas aplicáveis, indicadas no Quadro 3, e devem ter

^{**}Armações constituídas por componentes com ligações por soldadura.

Requisito	Descrição
	aptidão para a galvanização por imersão a quente, com exceção dos parafusos M10 e respetivas porcas e anilhas, que devem ser, pelo menos, de aço inoxidável A2.
	Componente OEV-R16 – Materiais
R011 – MAT	As cantoneiras em L de abas iguais, parafusos e respetivas porcas e anilhas são de aço e devem ser conformes as normas aplicáveis no Quadro 3 e devem ter aptidão para a galvanização por imersão a quente, com exceção do parafuso M10 e respetivas porcas e anilhas, que devem ser, pelo menos, de aço inoxidável A2.
	O material utilizado na manilha direita com cavilha é aço de acordo com a norma EN ISO 683-1 (forjado). O parafuso, as porcas constituintes da manilha são de aço da classe 8.8 e 8, respetivamente; e a golpilha é de aço inoxidável A2.
R012 – MAT	Estribos – Carga de rotura Os estribos das armações aplicadas em poste de betão de MT devem garantir uma carga de rotura de 10000 daN.

Quadro 3 Materiais constituintes dos componentes das armações de MT

Componentes das armações	Materiais	Normas aplicáveis
Perfil em U (UPN)	Aço S 275 JR (tensão de cedência superior mínima $R_{\rm eH}=275~{\rm N/mm^2})$	NP EN 10025-2
Cantoneira em L de abas iguais	Aço S 275 JR (tensão de cedência superior mínima $R_{\rm eH}$ = 275 N/mm²)	NP EN 10025-2
Barra retangular	Aço S 275 JR (tensão de cedência superior mínima $R_{\rm eH}$ = 275 N/mm²)	NP EN 10025-2
Chapas	Aço S 275 JR (tensão de cedência superior mínima $R_{\text{eH}} = 275 \text{ N/mm}^2$)	NP EN 10025-2
Pernos	Aço S 275 JR ^(*)	NP EN 10025-2
Parafusos	Aço: Classe 8.8 (**)	ISO 898-1, EN 15048-1, EN 15048-2
Paratusos	Aço inoxidável: Classe A2	NP EN ISO 3506-1, EN 15048-1, EN 15048-2
Davisa	Aço: Classe 8 (**)	ISO 898-2, EN 15048-1, EN 15048-2
Porcas	Aço inoxidável: Classe A2	ISO 3506-2, EN 15048-1, EN 15048-2
Audilla olava	Aço com dureza 200 HV (mínimo)	NP EN ISO 7089
Anilha plana	Aço inoxidável: Classe A2	NP EN ISO 7089, NP EN ISO 3506-1
Anilha de pressão ou de mola Aço mola com dureza 420 HV Aço inoxidável A2		DIN 127
Estribo	Aço S 275 JR ^(*)	NP EN 10025-2
Gancho	Aço S 275 JR	NP EN 10025-2

^{*} A tensão limite elástica mínima dos pernos e dos estribos deve ser de 300 MPa.

^{*} São admitidos parafusos e porcas da classe 5.6 desde que devidamente justificado pelos fornecedores e aceite pela EDP Distribuição

6.6 Dimensões e tolerâncias dos componentes das armações

Requisito	Descrição
	Dimensões principais dos componentes
R013 – MEC	As dimensões principais dos componentes das armações estão indicadas nas peças desenhadas para cada tipo de armação. Sempre que não sejam indicadas tolerâncias nos desenhos (ou no Quadro 4), aplica-se a classe de tolerância "c" (grosseira), segundo a norma EN 22768-1.
2014 1150	Perfis e barras – Conceção
R014 – MEC	Os perfilados e barras utilizados no fabrico das armações devem apresentar-se desempenados, dentro das tolerâncias admitidas e com as superfícies lisas.
	Parafusos, porcas e anilhas - Conjunto de parafusos e porcas
R015 – MEC	De acordo com a norma NP EN 1090-2, os conjuntos para ligações aparafusadas estruturais destinados a aplicações sem pré-esforço (parafuso + porca) devem estar em conformidade com a norma EN 15048-1.
	Parafusos, porcas e anilhas - Características dos parafusos
R016 – MEC	Os parafusos M12 e M16 são de cabeça sextavada e parcialmente roscados de acordo com as normas DIN 7990 ou NP EN ISO 4014. Cada parafuso é equipado com uma porca de acordo com a norma ISO 4032, uma anilha plana de acordo com a norma NP EN ISO 7089 e uma anilha de pressão ou de mola de acordo com a norma DIN 127. Por exemplo: M16x40x25+P(1)+AP(1)+AM(1) – Parafuso M16 com 40 mm de espiga e 25 mm de parte roscada com uma porca, uma anilha plana e anilha de mola ou de pressão.
	Os requisitos dimensionais estão indicados no Quadro 4.
	Parafusos, porcas e anilhas - Características dos parafusos M10
R017 – CONS	Os parafusos M10 são de cabeça sextavada e totalmente roscados de acordo com a norma ISO 4017. Cada parafuso é equipado com uma porca de acordo com a norma ISO 4032, uma anilha plana de acordo com a norma NP EN ISO 7089 e uma anilha de pressão ou de mola de acordo com a norma DIN 127. Por exemplo: M10x35+P(1)+AP(1)+AM(1)— Parafuso M10 com 35 mm de espiga com uma porca, uma anilha plana e anilha de pressão ou de mola.
	Os requisitos dimensionais estão indicados no Quadro 4.
	Pernos – Características
	Os pernos são de 16 mm de diâmetro, em conformidade com a norma NP EN 10060 e roscados apenas nas extremidades. Cada perno é equipado com duas porcas ou quatro porcas sextavadas de acordo com a norma ISO 4032 e duas ou quatro anilhas planas de acordo com a norma NP EN ISO 7089.
R018 – MEC	Na definição do comprimento total do perno, considerou-se que o perno fica saliente, no mínimo, cerca de 6 mm, após a sua última porca.
	Os pernos devem ser realizados por processo de corte por arranque de apara. Poderá ser aceite outro processo desde que sejam garantidas as dimensões indicadas no Quadro 4 e nas peças desenhadas.
	As tolerâncias dimensionais e de forma dos pernos estão indicadas no Quadro 4.
R019 – MEC	Estribos – Características

Requisito	Descrição
	Os estribos são de 16 mm de diâmetro de acordo com a norma NP EN 10060 e parcialmente roscados em ambas as extremidades. Os comprimentos dos ramos dos estribos são função do tipo de armação.
	Os estribos devem ser realizados por processo de corte por arranque de apara. Poderá ser aceite outro processo desde que sejam garantidas as dimensões indicadas no Quadro 4 e nas peças desenhadas.
	As tolerâncias dimensionais dos estribos estão indicadas no Quadro 4.
	OEV-R16 – Características
	As cantoneiras em L de abas iguais com dimensões 100x100x10 mm são em conformidade com as normas EN 10056-1 e NP EN 10056-2.
R020 – MEC	Os parafusos M12 são parcialmente roscados de acordo com a norma DIN 7990, com dimensões M12x40x20 (Parafuso M12 com 40 mm de espiga e 20 mm de parte roscada). Cada parafuso é equipado com uma porca de acordo com a norma ISO 4032, uma anilha plana de acordo com a norma NP EN ISO 7089 e uma anilha de pressão ou de mola de acordo com a norma DIN 127.
	A manilha direita com cavilha com espessura de 16 mm, abertura de 24 mm e comprimento de 98 mm é de acordo com a norma IEC 61284.
	As tolerâncias dimensionais do OEV-R16 estão indicadas no Quadro 4, com exceção da manilha.
	Parafusos, pernos e estribos - Conceção
R021 – MEC	Os parafusos, pernos, estribos e as respetivas porcas, na situação de prontos para entrega, devem poder roscar-se à mão, sem que sejam excessivas as folgas.
	Parafusos, pernos e estribos- Dimensionamento de rosca
R022 – MEC	Para compensar a espessura do revestimento, o fabricante poderá subdimensionar a rosca do perno, estribo e parafuso ou sobredimensionar a rosca da porca.

Quadro 4 Tolerâncias dimensionais e de forma dos componentes das armações de MT

Componentes das armações de MT	Tolerâncias dimensionais e de forma
	Em conformidade com a norma NP EN 10279.
	-Tolerâncias de altura, <i>h</i> :
	<i>h</i> ≤ 65 mm: ± 1.5 mm;
	65 mm < <i>h</i> ≤ 200 mm: ± 2.0 mm;
	-Tolerância de largura, <i>b</i> :
	50 mm < <i>b</i> ≤ 100 mm: ± 2.0 mm;
	100 mm < <i>b</i> ≤ 125 mm: ± 2.5 mm;
	-Desvios de esquadria, $k+k_1$:
	<i>b</i> ≤ 100 mm: 2.0 mm;
	100 mm < <i>b</i> : 2.5% de <i>b</i> ;
	-Desvios de linearidade, $q_{xx} e q_{yy}$:
	q_{xx} : para $h \le 150$ mm: $\pm 0.3\%$ de I , onde I é o comprimento do perfil,
	q_{yy} : para $h \le 150$ mm: $\pm 0.5\%$ de I , onde I é o comprimento do perfil;

Componentes das armações de MT	Tolerâncias dimensionais e de forma
	-Desvios de planicidade, <i>f</i> :
	$h \le 100 \text{ mm}: \pm 0.5 \text{ mm};$
	100 <h 1.0="" 200="" mm.<="" mm:="" td="" ±="" ≤=""></h>
	Em conformidade com a norma NP EN 10056-2.
	-Tolerâncias de comprimento, <i>a</i> :
	<i>a</i> ≤ 50 mm: ± 1.0 mm;
	50 mm < <i>a</i> ≤ 100 mm: ± 2.0 mm;
	100 mm < <i>a</i> ≤ 150 mm: ± 3.0 mm;
	-Tolerâncias de espessura, t:
Cantoneira em L de abas iguais	$t \le 5 \text{ mm}: \pm 0.50 \text{ mm};$
Cantonella em L de abas iguais	5 mm < <i>t</i> ≤ 10 mm: ± 0.75 mm;
	10 mm < <i>t</i> ≤ 15 mm: ± 1.00 mm;
	-Desvios de esquadria, <i>k</i> :
	<i>a</i> ≤ 100 mm: 1.0 mm;
	100 mm < <i>a</i> ≤ 150 mm: 1.5 mm;
	-Desvios de linearidade, q:
	$a \le 150$ mm: 0.4% de L , sendo L o comprimento da cantoneira
	Em conformidade com a norma NP EN 10058.
	-Desvios de largura, <i>b</i> :
	40 mm < <i>b</i> ≤ 80 mm: ± 1.0 mm;
	100 mm <b 120="" 2.0="" mm:="" mm;<="" td="" ±="" ≤="">
	-Desvios de espessura, t:
	<i>t</i> ≤ 20 mm: ± 0.5 mm;
Barra retangular	-Desvios de linearidade, q:
	Para área transversal nominal < 1000 mm²: ≤ 0.4% de <i>L</i> , sendo
	L o comprimento da barra,
	Para área transversal nominal $\geq 1000 \text{ mm}^2$: $\leq 0.25\% \text{ de } L$
	sendo L o comprimento da barra;
	-Desvios de secção, <i>u</i> : 10 mm ≤ <i>t</i> ≤ 25 mm: 0.5 mm.
	Em conformidade com a norma NP EN 10029.
	-Classe de tolerância para espessura: Classe A; -Tolerância de espessura (Classe A):
	3 mm $\leq t < 5$ mm: -0.3 mm (inferior), + 0.7 mm (superior);
	-Tolerância da largura:
Chapas	Segundo a espessura <i>t</i> < 40mm: 0.0 mm (inferior),+20 mn
Chapas	(superior);
	-Classe de planeza: Tolerâncias normais-Classe N;
	-Tolerância de Classe N, para aço de qualidade L ^(*) e comprimento
	de medição de 1000 mm:
	3 mm ≤ <i>t</i> < 5 mm: 9 mm.
	Em conformidade com as normas:
	-Dimensões, de acordo com a norma NP EN 10060:
	-Desvios de diâmetro:
Pernos	Para diâmetros de 16 mm: ±0.5 mm;
	- Desvios de linearidade, q:
	Para diâmetros inferiores a 25 mm, o valor não é fixado;
	Para diâmetros inferiores a 25 mm, o valor não é fixado; - Desvios de ovalização:
	- Desvios de ovalização:
Parafusos	- Desvios de ovalização: O desvio não deve exceder 75% do desvio do diâmetro.

Componentes das armações de MT	Tolerâncias dimensionais e de forma
	-Dimensões e tolerâncias: DIN 7990, NP EN ISO 4759-1.
	Parafusos M12:
	-Classe de tolerância de rosca: C;
	-Diâmetro da rosca: M12;
	-Comprimento da espiga, <i>l</i> :
	$I_{\text{nominal}} = 35 \text{ mm (desvio: } I = \pm 1.25 \text{ mm)};$
	$I_{\text{nominal}} = 40 \text{ mm (desvio: } I = \pm 1.25 \text{ mm)};$
	-Comprimento da rosca, b: b=20.5 mm;
	-Passo da rosca, <i>P: P</i> =1.75 mm;
	-Altura da cabeça do parafuso, <i>k:</i>
	$k_{\text{nominal}}=8 \text{ mm (desvio: } k = \pm 0.45 \text{ mm)};$
	-Dimensões da cabeças do parafuso <i>e</i> e <i>s:</i>
	e _{min} =19.85 mm,
	$s_{\text{max(nominal)}}=18 \text{ mm (} s_{\text{min}}=17.57 \text{ mm)}.$
	Parafusos M16:
	-Classe de tolerância de rosca: C;
	-Diâmetro da rosca: M16;
	-Comprimento da espiga, <i>l</i> :
	$I_{\text{nominal}} = 40 \text{ mm (desvio: } I = \pm 1.25 \text{ mm)};$
	$I_{\text{nominal}} = 45 \text{ mm (desvio: } I = \pm 1.25 \text{ mm)};$
	$I_{\text{nominal}} = 50 \text{ mm (desvio: } I = \pm 1.25 \text{ mm)};$
	-Comprimento da rosca, b: b=24.5 mm;
	-Passo da rosca, <i>P: P</i> =2 mm;
	-Altura da cabeça do parafuso, k:
	k_{nominal} =10 mm (desvio: $k = \pm 0.75$ mm);
	-Dimensões da cabeças do parafuso <i>e</i> e <i>s:</i>
	e _{min} =26.17 mm,
	$s_{\text{max(nominal)}}=24 \text{ mm (} s_{\text{min}}=23.16 \text{ mm)}.$
	Tolerâncias para todos os parafusos: em conformidade com a norma NP EN ISO 4759-1.
	Cabeça sextavada, totalmente roscados:
	-Dimensões e tolerâncias: ISO 4017, NP EN ISO 4759-1;
	-Diâmetro da rosca: M10;
	-Classe A;
	-Comprimento da espiga, <i>l</i> :
	$I_{\text{nominal}} = 35 \text{ mm (desvio: } I = \pm 0.5 \text{ mm)};$
	-Passo da rosca, <i>P: P</i> =1.5 mm;
	-Altura da cabeça do parafuso, k:
	k_{nominal} =6.4 mm (desvio: $k = \pm 0.18$ mm);
	-Dimensões da cabeças do parafuso <i>e</i> e <i>s:</i>
	e _{min} =17.77 mm,
	s _{max(nominal)} =16 mm (s _{min} =15.73 mm).
	Tolerâncias para os parafusos: em conformidade com a norma NP
	EN ISO 4759-1.
	Em conformidade com as normas:
	-Dimensões e tolerâncias: ISO 4032; NP EN ISO 4759-1
	Porcas M12:
Damas	-Classe de tolerância de rosca: A;
Porcas	-Passo de rosca: 1.75 mm;
	-Altura, <i>m</i> : <i>m</i> _{min} =10.37 mm, <i>m</i> _{max} =10.80 mm;
	-Dimensões da porca <i>e</i> e <i>s:</i>
	e _{min} =20.03 mm,

Componentes das armações de MT	Tolerâncias dimensionais e de forma
	s _{max(nominal)} =18 mm (s _{min} =17.73 mm).
	Porcas M16:
	-Classe de tolerância de rosca: A;
	-Passo de rosca: 2 mm;
	-Altura, <i>m</i> : <i>m</i> _{min} =14.10 mm, <i>m</i> _{max} =14.80 mm;
	-Dimensões da porca <i>e</i> e <i>s:</i>
	e _{min} =26.75 mm,
	$s_{\text{max(nominal)}}$ =24 mm (s_{min} =23.67 mm).
	Tolerâncias para todos as porcas: em conformidade com a norm NP EN ISO 4759-1.
	Em conformidade com as normas:
	- Dimensões e tolerâncias: NP EN ISO 7089; EN ISO 4759-3.
	Diâmetro nominal, <i>d</i> = 12 mm:
	- Classe de tolerância: A;
	Diâmetro interno, d₁:
	$d_{1 \min (nominal)}$ = 13.00 mm, $d_{1 \max}$ =13.27 mm;
	Diâmetro exterior, d₂:
	$d_{2 \max (nominal)} = 24.00 \text{ mm}, d_{2 \min} = 23.48 \text{ mm};$
	Espessura, h:
Anilha plana	$h_{nominal}$ =2.5 mm (desvio: $h = \pm 0.2$ mm);
Allilla pialla	Diâmetro nominal, <i>d</i> = 16 mm:
	- Classe de tolerância: A;
	Diâmetro interno, d ₁ :
	$d_{1 \text{ min (nominal)}} = 17.00 \text{ mm}, d_{1 \text{ max}} = 17.27 \text{ mm};$
	Diâmetro exterior, d ₂ :
	$d_{2 \text{ max (nominal)}}=30.00 \text{ mm}, d_{2 \text{ min}}=29.48 \text{ mm};$
	Espessura, h:
	$h_{nominal}$ =3 mm (desvio: $h = \pm 0.3$ mm);
	Tolerâncias para todas as anilhas: em conformidade com a norm
	NP EN ISO 4759-3.
	Em conformidade com a norma DIN 127.
	Diâmetro nominal= 12 mm:
	Diâmetro interior, d_1 :
	$d_{1 \text{ min}}$ = 12.2 mm, $d_{1 \text{ max}}$ =12.7 mm;
	Diâmetro exterior, d₂:
	d _{2 max} =21.1 mm;
	Espessura, s:
	s=2.5 mm, desvio= ±0.15 mm;
	Diâmetro nominal= 16 mm:
	Diâmetro interior, d ₁ :
	$d_{1 \text{ min}} = 16.2 \text{ mm}, d_{1 \text{ max}} = 17 \text{ mm};$
	Diâmetro exterior, d₂:
	d _{2 max} =27.4 mm;
	Espessura, s:
	s=3.5 mm, desvio= ±0.2 mm.
	Em conformidade com as normas:
	-Dimensões, de acordo com a norma NP EN 10060:
Estribo	-Desvios de diâmetro:
	Para diâmetros de 16 mm: ±0.5 mm;
Estribo	Dosvios de linearidade a:
Estribo	- Desvios de linearidade, <i>q</i> : Para diâmetros inferiores a 25 mm, o valor não é fixado;

Componentes das armações de MT	Tolerâncias dimensionais e de forma
	O desvio não deve exceder 75% do desvio do diâmetro.
	-Roscas: ISO 965-1.
*Aço com tensão de cedência mínima revenidos.	especificada Re ≤ 460 MPa, nem temperados, nem temperados e

6.7 Revestimento de superfície

Requisito	Descrição
R023 – MEC	Métodos Os elementos das armações devem ser protegidos contra a corrosão por um revestimento (de zinco e ligas zinco-ferro) obtido pela imersão daqueles elementos convenientemente preparados num banho de zinco em fusão (galvanização por imersão a quente), com exceção dos parafusos M10 e respetivas porcas e anilhas, constituídas por aço inoxidável, pelo menos, A2 (de acordo com as normas indicadas no Quadro 3).
R024 – MEC	Galvanização por imersão a quente Todos os elementos das armações (estruturais, de ligação, de fixação, chapas antipouso, etc.) devem ser galvanizados por imersão a quente de acordo com a norma NP EN ISO 1461, com exceção dos parafusos M10 e respetivas porcas e anilhas, constituídas por aço inoxidável, pelo menos, A2.
R025 – MEC	Galvanização por imersão a quente: lingotes de zinco Os lingotes de zinco a utilizar na galvanização por imersão a quente devem satisfazer os requisitos fixados na norma ISO 752.
R026 – MEC	Tratamentos após revestimento de superfície Os elementos das armações não devem sofrer qualquer tratamento ou repassagem mecânica após a galvanização, exceto, quando assumido, nas seguintes situações: — repassagem de roscas de porcas; — reparação de pequenos defeitos locais.
R027 – MEC	Qualidade do revestimento de superfície A qualidade do revestimento deve ser avaliada com base nas seguintes características: — aspeto de superfície; — aderência; — continuidade e uniformidade; — massa de zinco por unidade de superfície (ensaio de tipo)/espessura (ensaio de receção).

6.7.1 Aspeto de superfície do revestimento

Requisito	Descrição
R028 – MEC	Revestimento de superfície - Aspeto O revestimento deve apresentar um aspeto liso (isento de nódulos e bolhas¹), ausência de rugosidade e pontas aguçadas, entre outros), isento de resíduos de fluxo, de escorrimentos e de cinzas de zinco.

6.7.2 Aderência do revestimento

Requisito	Descrição
R029 – MEC	Revestimento de superfície - Aderência O revestimento deve ser suficientemente aderente para suportar, sem fissuração ou escamagem, as operações de armazenamento, transporte e montagem e as condições de serviço.

Nota: nos ensaios de tipo, a aderência do revestimento deve ser verificada com base na norma NP 526.

6.7.3 Continuidade e uniformidade do revestimento

Requisito	Descrição
R030 – MEC	Revestimento de superfície – Continuidade O revestimento deve ser contínuo (ausência de zonas não revestidas), tão uniforme quanto possível (para evitar que se danifique durante o manuseamento), e isento de tudo que possa prejudicar a utilização da armação.
R031 – MEC	Revestimento de superfície – Defeitos e reparação Os elementos das armações com defeitos de revestimento poderão ser reparados, desde que a superfície a reparar não exceda 0.5% da superfície total do elemento e que a área de cada defeito não seja superior a 10 cm², de acordo com a norma NP EN ISO 1461. Nas áreas reparadas, a espessura do revestimento deve ser, no mínimo, 30 µm superior à espessura local de revestimento indicada no Quadro 5. A eficácia da reparação deve ser garantida pelo fabricante², quaisquer que sejam os processos e os materiais utilizados (projeção térmica de zinco³), pintura rica em zinco aplicada em várias camadas, etc.).

Nota: nos ensaios de tipo, a uniformidade do revestimento deve ser verificada por imersão de provete (com 15 cm x 5 cm) de comprimento), segundo a norma NP 527.

6.7.4 Massa por unidade de superfície e espessura do revestimento

¹⁾ Elevações do revestimento sem metal sólido subjacente.

²⁾ Aquando da apresentação de candidatura/proposta, o fabricante deve evidenciar a eficácia da reparação (apresentação de ensaios e referências de experiência de utilização).

³⁾ Ver EN ISO 12679, ISO 2063-1 e ISO 2063-2.

Requisito	Descrição
R032 – MEC	Revestimento de superfície – massa de zinco e espessura do revestimento A massa de zinco depositada por unidade de superfície e a espessura da camada de zinco devem respeitar os valores (mínimos) indicados no Quadro 5, de acordo a norma NP EN ISO 1461.

Quadro 5 Massas e espessuras de revestimento

Elementos das armações		Valores mínimos		Valores médios	
		Espessura local do revestimento μm	Massa local do revestimento ^(*) g/m ²	Espessura (média) do revestimento µm	Massa (média) do revestimento ^(*) g/m²
Perfis em U, cantoneiras em L	Espessura da > 6 mm	70	505	85	610
abas iguais e barr retangulares	as Espessura ≤6 mm	55	395	70	505
Chapas, anilhas quadradas e	Espessura > 6 mm	70	505	85	610
ferragens de ligaç à terra	ão Espessura ≤3 mm	45	325	55	395
Pernos, parafusos, estribos e porcas ^(**)		40	285	50	360
Anilhas ^(**) –	Espessura ≥ 3mm	45	325	55	395
Aminas, /	Espessura < 3mm	35	250	45	325

^{*} Valor calculado a partir da espessura e da densidade do revestimento (7.2 g/cm³).

- Nota 1: nos ensaios de tipo, a espessura do recobrimento deve ser determinada por método magnético, de acordo com a norma EN ISO 2178 e/ou pelo método gravimétrico, segundo a norma NP EN ISO 1460.
- Nota 2: nos ensaios de receção, a espessura do recobrimento deve ser determinada por método magnético, de acordo com a norma EN ISO 2178.
- Nota 3: quando as armações se destinem a zonas com condições ambientais particularmente agressivas ou se entender necessária uma durabilidade do revestimento maior, a EDP Distribuição poderá fixar outros valores para as massas e espessuras do revestimento.

^{*} Revestimento por galvanização por imersão a quente com centrifugação.

MARCAÇÃO

Requisito	Descrição
	Os elementos estruturais das armações (perfis, barras e chapas) devem ser marcados, de forma indelével e bem legível, com pelo menos, as seguintes indicações:
	a) Perfis em U (utilizados nas travessas das armações) e cantoneiras em L de abas iguais — nome ou marca do fabricante;
	— ano e semana de fabrico, de acordo com a norma ISO 8601 com representação da data na forma básica YYYYWww (exemplo: 2018W30 para a 30ª semana de 2018).
	— referência do componente da armação, indicada nas peças desenhadas, na tabela de quantidade e pesos.
	Exemplo: MF2018W30 T2000/60, onde: MF é a marca do fabricante, 2018W30 é o ano e a semana de fabrico e T2000/60 é a referência do componente da armação.
	b) Barras retangulares (tirantes das travessas)
	— referência do componente da armação, indicada nas peças desenhadas, na tabela de quantidade e pesos.
	c) Chapas (de ligação e/ou fixação)
	 referência do componente da armação, indicada nas peças desenhadas, na tabela de quantidade e pesos.
R033 – MEC	d) Dispositivo de proteção de avifauna
	— nome ou marca do fabricante;
	— ano e semana de fabrico, de acordo com a norma ISO 8601 com representação da data na forma básica YYYYWww (exemplo: 2018W30 para a 30ª semana de 2018).
	e) Anilhas quadradas e ferragem de ligação à terra (*)
	 referência do componente da armação, indicada nas peças desenhadas, na tabela de quantidade e pesos.
	f) Estribos ^(*)
	 referência do componente da armação, indicada nas peças desenhadas, na tabela de quantidade e pesos.
	Nota : A referência dos componentes das armações é dada por:
	— Txxxx/xx — Componente para travessa. Exemplo: T2000/60;
	— Txxx – Componente para tirante. Exemplo: T530;
	— Bxxxx/xx e Blxx – Componente para braço. Exemplo: B1200/65 e BI60; — FHxx – Ferragem para esteira horizontal. Exemplo: FH80;
	— Prixx = Perrugent para esteria nonzontal. Exemplo. Prioto, — AQxx = Anilha quadrada. Exemplo: AQ50;
	— FLT – Ferragem de ligação à terra. Exemplo: FLT;
	— QZxx-xxx-xx – Estribo. Exemplo: QZ16-190-70.

Requisito	Descrição
	* Esta marcação pode ser dispensada , a pedido do fabricante, se devidamente justificada e autorizada pela EDP Distribuição.

8 FABRICAÇÃO

Requisito	Descrição
R034 – MEC	Princípios gerais A fabricação dos elementos das armações deve ser realizada por meio de processos adequados nos quais se devem incluir os controlos necessários que garantam a qualidade do produto final.
R035 – MEC	Métodos Os métodos oficinais utilizados deverão ser tecnicamente perfeitos e adequados à fabricação em série.
R036 – MEC	Forma e dimensões A forma e dimensões dos elementos estruturais, e também a disposição das respetivas furações, devem ser determinadas com suficiente rigor, por forma a permitir a montagem fácil das armações sem necessidade de recorrer a qualquer ferramenta especial para conseguir a coincidência de furos.
R037 – MEC	Elementos estruturais Os elementos estruturais das armações devem ser fabricados a partir de perfis, barras e chapas com dimensões suficientes, não sendo permitida qualquer emenda por soldadura ou por qualquer outro processo.
R038 – MEC	Elementos estruturais: condição de aceitação Não são aceites elementos fissurados ou recuperados com soldadura.

8.1 Desempeno

Requisito	Descrição
R039 – MEC	Condição de aceitação Quando os perfilados ou as chapas sofram, acidentalmente, fortes deformações devem ser rejeitadas as zonas deformadas.
R040 – MEC	Operações Quando a sua deformação não for excessiva, os perfis, as barras e as chapas podem, até à espessura de 6 mm, ser desempenadas por percussão; para espessuras superiores, o desempeno deve ser feito mecanicamente e por pressão progressiva.

Requisito	Descrição
R041 – MEC	Retilinearidade e planicidade dos elementos estruturais A retilinearidade e a planicidade dos elementos estruturais devem manter-se após efetuadas as demais operações (corte, furação, decapagem, galvanização, movimentação, etc.).

8.2 Forjamento

Requisito	Descrição
R042 – MEC	Forjamento de peças com deformação Serão, obrigatoriamente, forjadas a quente as peças que poderão deformar-se mais de 20° ou mais de 15º, conforme se trate, respetivamente, de peças com espessura até 6 mm, ou de espessura superior.

8.3 Corte

Requisito	Descrição
R043 – MEC	Operação de corte A operação de corte não deve introduzir, nos elementos estruturais, modificações da sua microestrutura que possam prejudicar a resistência mecânica das armações ou prejudicar a qualidade especificada para o revestimento de superfície.
R044 – MEC	Ferramentas de furação e corte As ferramentas de furação e corte, respetivamente, saca-bocados (ou equipamentos incluindo funções equivalentes) e tesouras ou guilhotinas (ou equipamentos incluindo funções equivalentes), devem encontrar-se sempre escrupulosamente afiadas. Estes equipamentos deverão ter características de inércia apropriadas à espessura do material a furar ou a cortar, para que, desta operação, não resulte fadiga excessiva para o material furado ou cortado.
R045 – MEC	Aspeto da superfície de corte Todas as superfícies de corte devem apresentar-se lisas, devendo eliminar-se as rebarbas das peças fabricadas.
R046 – MEC	Bordos dos elementos estruturais Os bordos dos elementos estruturais devem ter uma superfície de corte perfeita, não devem apresentar rebarbas e devem permitir o ajustamento correto dos elementos a ligar e a colocação sem dificuldades dos parafusos.
R047 – MEC	Operação após corte Os cortes dos perfis e das barras, nas zonas de ligação, devem ser alisados, para evitar que qualquer rebarba ou irregularidade da zona de corte prejudique a execução das ligações.
R048 – MEC	Arestas Devem ser evitadas arestas vivas, sempre que possível, utilizando raios de curvatura não inferiores a 1.5 mm.

8.4 Furação

Requisito	Descrição
R049 – MEC	Execução da furação A traçagem deve ser feita com precisão e de acordo com os desenhos de execução a elaborar pelo fabricante. A traçagem e execução dos furos devem permitir a montagem precisa dos elementos a ligar e, ainda, a intermutabilidade dos elementos homólogos.
R050 – MEC	Operações de furação As operações de furação por punçoamento deverão ser particularmente cuidadas; os furos circulares não devem resultar ovalizados, nem apresentar os bordos deformados, devendo as respetivas rebarbas ser retiradas. O punçoamento é permitido desde que a espessura nominal do componente não seja maior do que o diâmetro nominal do furo ou, no caso de um furo não circular, não seja maior que a sua menor dimensão. Os furos podem ser executados por punçoamento sem retificação, salvo especificação do contrário.
R051 – MEC	Diâmetro dos furos A menos que outros valores sejam indicados nas peças desenhadas, os furos deverão ter um diâmetro nominal igual ao dos respetivos parafusos, aumentado de 1 mm (máximo) ⁴⁾ para os parafusos de diâmetro inferior a 16 mm e de 2 mm (máximo) ⁵⁾ para os parafusos de diâmetro igual ou superior a 16 mm.
R052 – MEC	Distâncias entre furos As distâncias máximas e mínimas entre eixos dos furos circulares e ovalizados, distâncias às extremidades e aos bordos nos perfis e chapas devem estar em conformidade com a norma NP EN 1993-1-8 (quadro 3.3).
R053 – MEC	Folgas De acordo com a norma NP EN 1090-2, a folga nominal é definida como: — a diferença entre o diâmetro nominal do furo e o diâmetro do parafuso para furos circulares; — a diferença entre , respetivamente, o comprimento ou largura do furo e o diâmetro nominal do parafuso, para furos ovalizados. As folgas nominais devem ser de acordo com o Quadro 6.
R054 – MEC	Execução de furos ovalizados De acordo com a norma NP EN 1090-2, os furos ovalizados longos devem ser executados por punçoamento numa só operação ou por perfuração ou punçoamento de dois furos e finalizados manualmente por corte térmico, salvo especificação do contrário.

Estes furos poderão apresentar diâmetros máximos até d+1+0 (tolerância positiva igual a zero), sendo d o diâmetro nominal do parafuso em milímetros.

⁵⁾ Estes furos poderão apresentar diâmetros máximos até d+2+0 (tolerância positiva igual a zero), sendo d o diâmetro nominal do parafuso em milímetros.

Quadro 6 Folgas nominais para parafusos

Diâmetro nominal do furo (mm)	Folgas nominais (mm)
M10 ^(*)	1
M12	1
M16	2

^{*}Considera-se para um furo M10, a folga nominal de 1mm, embora a norma NP EN 1090-2 (Quadro 11) não indique valores inferiores a diâmetro M12.

8.5 Galvanização

Requisito	Descrição
R055 – MEC	Tratamentos prévios Antes de serem galvanizadas, as peças devem ser convenientemente limpas de ferrugem, vidrado de laminagem (carepa), gordura ou qualquer matéria que prejudique a galvanização ^{6).}
R056 – MEC	Características do zinco utilizado O zinco utilizado deve ser de 1ª fusão de acordo com a norma EN 1179 e as respetivas impurezas devem ser suficientemente pequenas para permitir que o banho metálico apresente, dentro da tina do forno de zincagem, a pureza mínima fixada na presente secção. O zinco utilizado será chamado de "primeira fusão", de qualidade adequada para a galvanização; o fabricante deve justificar a proveniência dos lingotes de zinco, se solicitado pela EDP Distribuição.
R057 – MEC	Características do banho de imersão de zinco No tanque de galvanização, entre 30 cm a 35 cm abaixo da superfície livre, o banho de zinco conterá no máximo 1.5% em massa de outros elementos de acordo com a norma NP EN ISO 1461 e ISO 752, que não deverá incluir mais do que 0.02% de alumínio.
R058 – MEC	Teor de zinco e temperatura do banho de zinco A zincagem das peças das armações, incluindo parafusos, porcas e anilhas — depois de devidamente desengorduradas e decapadas — far-se-á a quente, à temperatura mínima de 450 graus centígrados ⁷⁾ , mergulhando-as em zinco fundido com teor mínimo de 98.5% de Zn (Classe ZN-5, de acordo com a norma ISO 752).
R059 – MEC	Galvanização de elementos roscados e anilhas

⁶⁾ As operações envolvidas no processo seco são: desengorduramento, lavagem, decapagem, lavagem, fluxagem, préaquecimento, galvanização e arrefecimento. O processo húmido não exige pré-aquecimento nem fluxagem independente.

Mas sem ultrapassar 460 °C (considera-se que, regra geral, a maior espessura do revestimento é obtida na gama de temperaturas entre 440 °C e 460 °C).

Requisito	Descrição
	Os elementos roscados e anilhas devem ser sujeitos a galvanização por imersão a quente com centrifugação, de acordo com a norma NP EN ISO 1461, com exceção dos parafusos M10 e respetivas porcas e anilhas, constituídas por aço inoxidável, pelo menos, A2.
	A galvanização das porcas, parafusos, pernos e estribos não deverá conduzir à obstrução do fundo dos filetes. Após a galvanização, as porcas, os parafusos, os pernos e os estribos devem poder "roscar-se" à mão, sem jogo apreciável ⁸⁾ , não sendo permitido qualquer repassagem das roscas, com exceção do indicado para as porcas nas notas 1 e 2 abaixo.
R060 – MEC	Alteração dos elementos estruturais após revestimento de superfície Não é permitida qualquer modificação dos elementos estruturais (por corte, furação, etc.), após a galvanização.

- **Nota 1:** apenas as roscas das porcas podem ser repassadas após a galvanização, mas desde que nesta operação seja retirado apenas o excesso de zinco acumulado no fundo dos filetes e/ou nos seus flancos (repassagem com macho de dimensões inferiores ao utilizado na abertura da rosca).
- **Nota 2:** se após a galvanização da porca, a sua rosca for alargada para fazer face à espessura do revestimento do parafuso, as porcas devem ser fornecidas montadas nos respetivos parafusos, bem como as respetivas anilhas.

9 EMBALAGEM

Requisito	Descrição
R061 – LOGI	Critérios de embalagem
	Os critérios a que deverão obedecer as especificações de embalagem ⁹⁾ das armações deverão ser aprovados previamente pela EDP Distribuição ¹⁰⁾ .
	As especificações de embalagem devem conter, obrigatoriamente, a lista de componentes e quantidades da armação, o desenho do esquema de montagem da armação completa, uma etiqueta de Código de Barras e o código SAP da EDP Distribuição associado.
R062 – LOGI	Desenhos a integrar a embalagem
	O desenho do esquema de montagem a integrar na embalagem deve ter um código de barras associado e um código SAP.
R063 – LOGI	Embalagem – Individualização dos componentes
	Todos os componentes devem ser individualizados por armação.
	Cada embalagem deve ser feita individualmente por armação e deve ser cintada com fitas de nylon ou equivalente.

⁸⁾ Com garantia dos valores dos ensaios de carga fixados na norma ISO 898-1 e ISO 898-2.

⁹⁾ Aquando da apresentação de candidaturas/propostas de fornecimento, os fabricantes devem apresentar as suas propostas de especificações de embalagem.

¹⁰⁾ Na proposta de fornecimento, o fabricante deve especificar os critérios que se propõe respeitar, podendo a EDP Distribuição aceitá-los ou não, na totalidade ou em parte.

Requisito	Descrição
R064 – LOGI	Embalagem dos elementos de fixação e ligação
	Os elementos de fixação e ligação (pernos, estribos e parafusos, fornecidos com as porcas e anilhas montadas) devem ser individualizados (em função das suas dimensões) numa manga plástica fechada de cor cristal (termosoldável, com mínimo de 100 µm de espessura e com uma massa máxima de 7 kg), com dimensões superiores aos comprimentos máximos das peças incluídas.
	Cada manga plástica deve estar etiquetada com identificação da armação, indicação do seu conteúdo (lista de componentes e quantidades), nome de fabricante e código SAP da EDP Distribuição associado. As mangas plásticas devem estar cintadas (com uma banda adesiva ou um filme plástico) de forma a estabilizar a embalagem.

10 ETIQUETAGEM

Requisito	Descrição
R065 – LOGI	Etiquetagem JUMP – QR Code e código de barras
	As armações de aço para postes de betão devem seguir as instruções definidas no documento "Programa JUMP – Etiquetagem de Materiais e Equipamentos", quanto à forma e método de etiquetagem e conceção das etiquetas (Etiqueta de Código de Barras).
R066 – LOGI	Etiqueta de Código de Barras
	Cada armação deve ser identificada com uma etiqueta de Código de Barras, que deverá cumprir a estrutura normalizada EAN 128.
	Para materiais geridos por número de lote e por quantidade, como é o caso das armações, o código de barras deve estar afixado ou pendurado, sendo apenas necessário assegurar a durabilidade do mesmo até ao momento da sua instalação, pelo que o mesmo deverá resistir às varias movimentações decorrentes dos processos logísticos e de aprovisionamento.
	Etiquetas e QR Code
R067 – LOGI	As embalagens agrupadas deverão ser dotadas de QR Code que deverá ser colocado em local visível e de fácil acesso para leitura.
	Para entrega de armações agrupadas de códigos SAP/lotes/ano de fabrico diferentes serão necessários tantos QR Code quantas as diferentes combinações.
	Os dados tipificados para caracterização do ativo, e que devem ser integrados no QR Code, são os apresentados:
	— Código SAP;
	— № do Lote;
	— Quantidade;
	— Fabricante;
	— Modelo;
	— Ano e Mês de Fabrico; — Tipo de Armação;
	— Tipo de fixação.

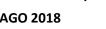
11 LIGAÇÕES SOLDADAS

Requisito	Descrição
	Soldadores e operadores de soldadura – Certificação
R068 – MEC	Os soldadores, os operadores de soldadura e os procedimentos de soldadura devem ser certificados em conformidade com as normas aplicáveis. Os certificados deverão ser apresentados à EDP Distribuição.
	Soldadores e operadores de soldadura – Qualificação
R069 – MEC	A qualificação de soldadores e operadores de soldadura deve ser realizada de acordo com as normas EN ISO 9606-1 e EN ISO 14732.
	Soldadura de aços ferríticos
	De acordo com a norma NP EN 1090-2, a soldadura por arco dos aços ferríticos deve ser executada de acordo com as normas EN 1011-1 e NP EN 1011-2.
	Para além das normas referidas nesta secção, nas ligações soldadas, também deverão ser considerados os requisitos das normas indicadas na secção 3 do presente documento, onde aplicável:
	a) requisitos de qualidade da qualidade na soldadura de acordo com as normas NP EN ISO 3834- 1, NP EN ISO 3834-3, NP EN ISO 3834-4, NP EN ISO 3834-5 e EN ISO 3834-2;
R070 – MEC	b) especificação e qualificação de procedimentos de soldadura conforme as normas NP EN ISO 15607, NP EN ISO 15609-1, NP EN ISO 15609-2, NP EN ISO 15610 e EN ISO 15609-3, EN ISO 15609-4, EN ISO 15609-5 e EN ISO 15609-6;
	c) nomenclatura dos processos de acordo com a norma NP EN ISO 4063;
	 d) regras gerais dos ensaios não destrutivos de soldadura de acordo com a norma EN ISO 17635; níveis de aceitação dos ensaios: por líquidos penetrantes de acordo com a norma EN ISO 23277, por partículas magnéticas conforme a norma NP EN ISO 23278 e radiográficos de acordo com a norma EN ISO 10675-1;
	e) preparação de juntas soldadas conforme as normas EN ISO 9692-1 e NP EN ISO 9692-2;
	f) classificação de imperfeições geométricas conforme a norma NP EN ISO 6520-1.
	Procedimentos de soldadura
R071 – MEC	Os procedimentos escritos relativos à realização de ligações soldadas para as armações de aço devem ser conforme as normas NP EN ISO 15607 e NP EN ISO 15609-1. Estes procedimentos devem ser aprovados conforme as normas NP EN ISO 15613 e EN ISO 15614-1.
	Cordões de soldadura – Inspeção visual
R072 – MEC	Os cordões de soldadura devem ser inspecionados visualmente de acordo com a norma EN ISO 17637 e com recurso a métodos que permitam a deteção de fissuras, porosidade, penetração incompleta, inclusão de materiais não metálicos e fusão incompleta das paredes laterais.
	Metal de adição – Requisitos
R073 – MEC	O metal de adição para soldadura deve apresentar propriedades mecânicas não inferiores à do metal de base e possuir adequadas características metalúrgicas em face da natureza do metal de base, do processo de soldadura utilizado, do tipo de cordões a executar e das condições em que é executada a soldadura.

Requisito	Descrição	
	O metal de adição deve cumprir com os requisitos de acordo com a norma EN 13479 e com o quadro 5 da norma NP EN 1090-2.	
R074 – MEC	Cordões de soldadura – Qualidade A qualidade dos cordões de soldadura deve corresponder aos limites para as imperfeições p níveis de qualidade definidos pela norma NP EN ISO 5817. A conformidade da qualidade cordões de soldadura é determinada de acordo com o resultado dos métodos de insperutilizados. A não verificação dos requisitos previstos pelas normas pode implicar uma alterado processo de soldadura.	
R075 – MEC	 Soldadura – Métodos de inspeção Os métodos de inspeção a efetuar nas ligações soldadas das armações de MT de aço devem ser os seguintes: a) inspeções visuais, de acordo com a norma EN ISO 17637, a realizar nos ensaios de tipo nas armações de MT acabadas; b) ensaios não destrutivos com recurso a líquidos penetrantes, conforme a norma NP EN ISO 3452-1 e/ou com recurso a partículas magnéticas de acordo com a norma NP EN ISO 17638, a realizar no ensaio de tipo sobre as armações de MT acabadas; c) ensaios radiográficos, de acordo com as normas EN ISO 17636-1 e EN ISO 17636-2, a realizar no ensaio de tipo sobre as armações de MT acabadas. 	

12 ENSAIOS

12.1 Ensaios de tipo


Requisito	Descrição	
	Documentação	
Aquando da realização dos ensaios de tipo (ou previamente, se assim for fixado ou fabricante deve facultar à EDP Distribuição toda a documentação relevante re matérias-primas e aos materiais (lingotes de zinco utilizados na galvanização, procas, pernos, parafusos, porcas, anilhas, etc.) e ao controlo do processo de fabrica e conicidades de furos, espessura local e espessura média da galvanização por controlo do processo de peças com pequenos defeitos de galvanização, etc.).		
	Realização dos ensaios	
E02 – TIPO	Os ensaios de tipo devem ser realizados sobre elementos estruturais (perfis, barras e chapas), sobre elementos de ligação (pernos, parafusos, porcas e anilhas) e sobre estribos das armações em causa, antes do fabrico, na fase de fabrico e na fase de armações já acabadas.	
	Equipamentos e instrumentos	
E03 – TIPO	Aquando da apresentação das candidaturas/propostas de fornecimento, os fabricantes deverão indicar os instrumentos e equipamentos disponíveis em fábrica para a realização dos ensaios.	
	Apresentação de candidaturas/propostas	
E04 – TIPO	Aquando da apresentação das candidaturas/propostas de fornecimento, os fabricantes devem indicar os ensaios de tipo que poderão ser realizados em fábrica e os que, por falta de meios	

Requisito	Descrição
	adequados em fábrica, terão de ser realizados em laboratório oficial (entidade acreditada e aceite pela EDP Distribuição).

12.1.1 Ensaios sobre elementos estruturais (perfis, barras e chapas)

Descrição
Descrição
saio de determinação de características mecânicas - Ensaios de tração e de impacto
rificação das características mecânicas, segundo a norma a NP EN 10025-2 (ver secção 6.5 do esente documento). Os testes de caracterização mecânica devem ser em conformidade com a rma NP EN 10025-1, o ensaio de tração de acordo com a norma EN ISO 6892-1 e o ensaio de pacto deve ser conforme a norma EN ISO 148-1.
saio de inspeção visual - Marcação
rificação, por inspeção visual, da marcação dos elementos estruturais, antes e depois de serem ometidos à operação de galvanização, quando aplicável (ver secção 7 do presente documento).
saio de inspeção visual – Defeitos de superfície
rificação, por inspeção visual, da não existência de rebarbas, asperezas ou defeitos nelhantes, nas superfícies dos perfis, barras e chapas, antes e depois de serem submetidos à eração de galvanização (ver secções 8, 8.3 e 8.4 do presente documento).
saio de medição – Dimensões dos elementos estruturais
rificação, com instrumentos de medição adequados, das dimensões transversais e longitudinais s elementos estruturais (ver secção 6.6 do presente documento).
saio de medição – Diâmetro e conicidade de furos
rificação, com instrumentos de medição adequados, dos diâmetros dos furos dos elementos ruturais e eventuais conicidades dos furos, antes e depois de os elementos estruturais serem ometidos à operação de galvanização (ver secção 8.4 do presente documento).
saio de medição – Linearidade e planicidade dos elementos estruturais
rificação, com instrumentos de medição adequados, da linearidade e planicidade dos mentos estruturais, antes e depois de serem submetidos à operação de galvanização (ver cções 6.6 e 8.1 do presente documento).
saio de medição – Distâncias entre furos
rificação, com instrumentos de medição adequados, das distâncias entre furos, distâncias de os a extremidades, a bordos e a arestas (ver secção 8.4 do presente documento).
saio de inspeção visual – Defeitos de corte
rificação, por inspeção visual, das extremidades dos elementos estruturais quanto à perfeição corte e à inexistência de rebarbas, antes da operação de galvanização (ver secção 8.3 do esente documento).

Requisito Descrição Verificação, por inspeção visual e com recurso a instrumentos de medição adequados, da uniformidade dos diâmetros dos furos, realizados a punção e/ou à broca, e da ausência de deformações, fendas ou rebarbas e da eventual conicidade dos furos, nomeadamente quando realizados exclusivamente por punçoamento (ver secção 8.4 do presente documento). Ensaio de inspeção visual – Aspeto, aderência, uniformidade e continuidade do revestimento de superfície **E14 - TIPO** Verificação, por inspeção visual e com recurso a meios adequados, do aspeto, aderência (de acordo com a norma NP 526), uniformidade e continuidade do revestimento dos elementos estruturais (de acordo com a norma NP 527) (ver secções 6.7.1, 6.7.2 e 6.7.3 do presente documento). Ensaio de determinação da espessura local do revestimento de superfície - Método magnético Verificação da espessura local¹¹⁾ do revestimento, em três áreas de referência¹²⁾ (com cerca de 100 cm² cada uma), localizadas aleatoriamente (mas com exclusão de áreas na proximidade de extremidades, arestas ou bordos). As medições, em número de cinco por cada área de referência, **E15 – TIPO** devem ser realizadas por método magnético, segundo a norma EN ISO 2178. Para cada uma das áreas de referência, a média aritmética dos valores obtidos nas respetivas 5 medições não deve ser inferior ao valor estipulado (55 μm para espessuras ≤ 6 mm; 70 μm para espessuras > 6 mm) indicado no Quadro 5 (ver secção 6.7.4 do presente documento). Ensaio de determinação da espessura média do revestimento de superfície Verificação da espessura média do revestimento dos elementos estruturais, determinada com **E16 - TIPO** base nas 15 medições efetuadas no requisito E15-TIPO. A média aritmética dos 15 valores obtidos não deve ser inferior ao valor estipulado (70 μm para espessuras ≤ 6 mm; 85 μm para espessuras > 6 mm) indicado no Quadro 5 (ver secção 6.7.4). Ensaio de determinação das massas locais e médias do revestimento de superfície - Processo gravimétrico Verificação das massas locais (mínimas) e médias (mínimas) do revestimento de superfície, por unidade de superfície, determinadas em ensaio de dissolução dos revestimentos de superfície de provetes (3 provetes de 5 cm de comprimento por cada elemento estrutural), segundo as normas NP 525 e NP EN ISO 1460 (ver secção 6.7.4 do presente documento). O ensaio deve incidir sobre, pelo menos, um elemento estrutural de cada espessura ou secção. Ter-se-á para cada elemento estrutural: **E17 – TIPO** m_{o1} – massa inicial, expressa em gramas, do provete 1; $-m_{02}$ – massa inicial, expressa em gramas, do provete 2; m_{03} massa inicial, expressa em gramas, do provete 3; - $m_{_{11}}$ - massa, expressa em gramas, após a dissolução do revestimento da superfície do provete 1; m_{12} – massa, expressa em gramas, após a dissolução do revestimento da superfície do provete 2;

¹¹⁾ Definição de espessura local segundo NP EN ISO 1461.

¹²⁾ Definição de área de referência segundo NP EN ISO 1461.

Requisito	Descrição		
	$ m_{13}$ - massa, expressa em gramas, após a dissolução do revestimento da superfície do		
	provete 3;		
	— A ₁ – área, expressa em metros quadrados, da superfície do provete 1;		
	— A ₂ – área, expressa em metros quadrados, da superfície do provete 2;		
	— A ₃ – área, expressa em metros quadrados, da superfície do provete 3.		
	Considera-se como massa local do revestimento de zinco por unidade de superfície o menor dos três valores obtidos, respetivamente, pelas expressões seguintes:		
	$\frac{m_{01}-m_{11}}{A_1}$; $\frac{m_{02}-m_{12}}{A_2}$; $\frac{m_{03}-m_{13}}{A_3}$		
	O menor destes valores não deve ser inferior ao valor estipulado (395 g/m² para espessuras de aba ≤ 6 mm; 505 g/m² para espessuras de aba > 6 mm) indicado no Quadro 5 da secção 6.7.4 do presente documento.		
	Considera-se como massa média do revestimento de zinco por unidade de superfície o valor dado pela expressão seguinte:		
	$\frac{1}{3} \left(\frac{m_{01} - m_{11}}{A_1} + \frac{m_{02} - m_{12}}{A_2} + \frac{m_{03} - m_{13}}{A_3} \right)$		
	Este valor não deve ser inferior ao valor estipulado (505 g/m² para espessuras de aba ≤ 6 mm; 610 g/m² para espessuras de aba > 6 mm) indicado no Quadro 5 (ver secção 6.7.4 do presente documento).		
	Ensaio de inspeção visual – Deteção de defeitos de soldadura		
E18 – TIPO	Exame visual de soldaduras para deteção de eventuais defeitos (descontinuidades na soldadura ou desvio da geometria prevista: fissuras, faltas de penetração ou fusão, porosidades, inclusões de escórias, etc.), de acordo com a norma EN ISO 17637.		
	Ensaios não destrutivos de soldadura – Líquidos penetrantes e/ou partículas magnéticas		
E19 – TIPO	Ensaios não destrutivos de soldaduras com recurso a líquidos penetrantes, conforme a norma NP EN ISO 3452-1 e/ou com recurso a partículas magnéticas de acordo com a norma EN ISO 17638.		
	Exames radiográficos de soldadura		
E20 – TIPO	Exame radiográfico de soldadura de acordo com as normas EN ISO 17636-1 e EN ISO 17636-2.		

12.1.2 Ensaios sobre elementos de ligação (pernos, parafusos, porcas, anilhas)

12.1.2.1 <u>Pernos</u>

Requisito	Descrição	
E21 – TIPO	Ensaio de medição – Dimensões e forma	

Requisito	Descrição	
	Verificação das dimensões e forma dos pernos: comprimentos da parte lisa e da parte roscada, diâmetro da parte lisa, geometria e dimensões da rosca, passo de rosca, etc. (ver secção 6.6 do presente documento).	
	Ensaio de determinação de características mecânicas - Ensaio de tração e outros ensaios	
E22 – TIPO	Verificação das características mecânicas (resistência à tração, resiliência, etc.) (ver secção 6.5 do presente documento).	
	O ensaio de tração deve ser de acordo com a norma EN ISO 6892-1 e o ensaio de impacto deve ser conforme a norma EN ISO 148-1.	
E23 – TIPO	Ensaio de inspeção visual – Aspeto, aderência, uniformidade e continuidade do revestimento de superfície	
	Verificação, por inspeção visual, do aspeto de superfície, aderência, uniformidade e continuidade do revestimento (ver secções 6.7.1, 6.7.2 e 6.7.3 do presente documento).	
E24 – TIPO	Ensaio para análise do revestimento de superfície	
	Verificação da qualidade do revestimento (ver secções 6.7 e respetivas subsecções).	
	Ensaio de verificação de aperto do perno	
E25 – TIPO	Verificação da possibilidade de "roscar" à mão o mesmo perno em diferentes porcas (pelo menos seis) com a mesma rosca nominal do perno (ver requisito E39-TIPO do presente documento), sem folgas excessivas (ver secção 8.5 do presente documento).	
	Ensaio para determinação do binário de aperto	
E26 – TIPO	Verificação dos binários de aperto conforme os valores indicados no Quadro 7, em conjunto com as porcas aplicáveis (ver requisito E41-TIPO do presente documento). Mantido o perno apertado durante um minuto, e desapertado em seguida, não devem observar-se deformações residuais nos seus filetes (os pernos devem continuar a poder "roscar-se" à mão nas respetivas porcas).	

Quadro 7
Binários de aperto em função do diâmetro dos pernos

Diâmetro dos pernos	Binário de aperto ^(*) (N.m)	
Diametro dos pernos	Aço S 275 JR	
M16	91	

*Valores máximos permitidos para o binário de aperto (os valores indicados estão majorados 1.5 vezes).

12.1.2.2 Parafusos

Requisito	Descrição	
E27 – TIPO	Ensaio de inspeção visual – Classe do parafuso	
	Verificação, por inspeção visual na cabeça do parafuso, da classe de resistência (Quadro 3 da secção 6.5 do presente documento).	
E28 – TIPO	Ensaio de inspeção visual – Marcação	
	Verificação, por inspeção visual da cabeça do parafusos, da marca identificadora do fabricante.	
	Ensaio de medição – Dimensões e forma	
E29 – TIPO	Verificação da geometria e dimensões da cabeça, espiga, parte lisa, parte roscada da espiga, passo de rosca, etc., com recurso a instrumentos de medição adequados (ver secção 6.6 do presente documento).	
	Ensaio de determinação de características mecânicas - Ensaio de tração	
E30 – TIPO	Verificação das características mecânicas (resistência à tração, resiliência, etc.) segundo as normas ISO 898-1, EN 15048-1, EN 15048-2, etc.	
	O ensaio de tração mecânica deve ser em conformidade a norma EN 15048-2 ^{13).}	
E31 – TIPO	Ensaio de verificação das folgas	
	Verificação das folgas entre roscas de parafusos e roscas de porcas, com recolha de alguns espécimes (uns para ficarem na posse do fabricante e outros para ficarem na posse da EDP Distribuição) para servirem de referência.	
	Ensaio para análise do revestimento de superfície	
E32 – TIPO	Verificação da qualidade do revestimento: de acordo com a norma NP EN ISO 10684, o revestimento por galvanização por imersão a quente dos parafusos deve ser livre de áreas não revestidas, bolhas, resíduos de fluxos, pontos negros, inclusões de escória e outros defeitos e a medição da sua espessura local deve ser realizada pelo método magnético de acordo com a norma EN ISO 2178.	
	Ensaio de verificação do aperto	
E33 – TIPO	Verificação da possibilidade de "roscar" à mão o mesmo parafuso em diferentes porcas (pelo menos seis) com a mesma rosca nominal do parafuso (ver, adiante, requisito E39-TIPO), sem folgas excessivas (ver secção 8.5 do presente documento).	
	Ensaio para determinação do binário de aperto	
E34 – TIPO	Verificação dos binários de aperto conforme os valores indicados no Quadro 8 em conjunto com as porcas aplicáveis (ver requisito E41-TIPO). Mantido o parafuso apertado durante um minuto, e desapertado em seguida, não devem observar-se deformações residuais nos seus filetes (os parafusos devem continuar a poder "roscar-se" à mão nas respetivas porcas). O binário de aperto não é aplicável aos parafusos M10.	

¹³⁾ Este ensaio deve ser realizado para o conjunto parafuso e porca.

Quadro 8
Binários de aperto em função do diâmetro dos parafusos

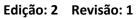
	Binário de aperto ^(*) (N.m)	
Diâmetro dos parafusos	Parafusos de classe de resistência 5.6	Parafusos de classe de resistência 8.8
M12	42	68
M16	106	169

^{*}Valores máximos permitidos para o binário de aperto (os valores indicados estão majorados 1.5 vezes).

12.1.2.3 <u>Porcas</u>

Requisito	Descrição	
E35 – TIPO	Ensaio de inspeção visual – Classe da porca Verificação, por inspeção visual, da classe de resistência (ver Quadro 3 da secção 6.5 do presente documento).	
E36 – TIPO	Ensaio de medição – Dimensões e forma Verificação da geometria e dimensões das porcas, com recurso a instrumentos de medição adequados (ver secção 6.6 do presente documento).	
E37 – TIPO	Ensaio de determinação de características mecânicas - Ensaio de tração Verificação das características mecânicas (resistência à tração, resiliência, etc.) segundo as normas ISO 898-2, EN 15048-1, EN 15048-2, etc. O ensaio de tração mecânica deve ser em conformidade a norma EN 15048-2 ¹⁴⁾ .	
E38-TIPO	Ensaio para análise do revestimento de superfície Verificação da qualidade do revestimento: de acordo com a norma NP EN ISO 10684, o revestimento por galvanização por imersão a quente das porcas deve ser livre de áreas não revestidas, bolhas, resíduos de fluxos, pontos negros, inclusões de escória e outros defeitos e a medição da sua espessura local deve ser realizada pelo método magnético de acordo com a norma EN ISO 2178.	
E39 – TIPO	Ensaio de verificação do aperto Verificação da possibilidade de "roscar" à mão a mesma porca em diferentes pernos, parafusos e estribos (pelo menos seis) com a mesma rosca nominal da porca (ver requisitos E25-TIPO, E33-TIPO e E47-TIPO do presente documento).	
E40 – TIPO	Ensaio de verificação das folgas Verificação das folgas entre roscas dos pernos e roscas das porcas, entre roscas de parafusos e roscas de porcas e entre roscas dos estribos e roscas das porcas, e com recolha de alguns	

¹⁴⁾ Este ensaio deve ser realizado para o conjunto parafuso e porca.


Requisito	Descrição
	espécimes (uns para ficarem na posse do fabricante e outros para ficarem na posse da EDP Distribuição) para servirem de referência.
	Ensaio para determinação do binário de aperto
E41 – TIPO	Verificação dos binários de aperto conforme os valores indicados nos seguintes quadros: Quadro 7 em conjunto com os pernos aplicáveis; Quadro 8, em conjunto com os parafusos aplicáveis e Quadro 9 em conjunto com os estribos aplicáveis (ver requisitos E26-TIPO, E34-TIPO e E48-TIPO). Mantida a porca apertada durante um minuto, e desapertada em seguida, não devem observarse deformações residuais nos seus filetes (as porcas devem continuar a poder "roscar-se" à mão nos respetivos pernos, parafusos e estribos). O binário de aperto não é aplicável às porcas M10 em conjunto com os respetivos parafusos.

12.1.2.4 <u>Anilhas</u>

Requisito	Descrição
E42 – TIPO	Ensaio de medição – Dimensões e forma Verificação, com recurso a instrumentos de medição adequados, da geometria e dimensões das anilhas (ver secção 6.6 do presente documento).
E43 – TIPO	Ensaio de determinação das massas do revestimento de superfície – Processo gravimétrico Verificação da massa do revestimento, por processo gravimétrico, segundo a norma NP 525 ou segundo a norma NP EN ISO 1460 (ver secção 6.7.4 deste documento).
E44 – TIPO	Ensaio de determinação de características mecânicas - Dureza Verificação, com recurso a instrumentos adequados (medidores de dureza), da dureza das anilhas (ver secção 6.5 do presente documento).
E45 – TIPO	Ensaio para determinação do binário de aperto Verificação dos binários de aperto conforme os valores indicados nos seguintes quadros: Quadro 7 em conjunto com os pernos e porcas aplicáveis (ver requisito E26-TIPO); Quadro 8, em conjunto com os parafusos e porcas aplicáveis (ver requisito E34-TIPO); e Quadro 9, em conjunto com os estribos e porcas aplicáveis (ver requisito E48-TIPO). Mantendo a anilha apertada durante um minuto, e desapertada em seguida, não devem observar-se deformações (os parafusos e os pernos devem continuar a poder "roscar-se" à mão nas respetivas porcas). O binário de aperto não é aplicável ao conjunto parafusos, porcas e anilhas M10.

12.1.3 Ensaios sobre estribos

Requisito	Descrição
	Ensaio de determinação de características mecânicas - Ensaio de tração
E46 – TIPO	Verificação da resistência à tração dos estribos de acordo com EN ISO 6892-1, NP EN 10025-1 e NP EN 10025-2 (ver secção 6.5 do presente documento).
	Estes ensaios devem comprovados pelo fabricante, com base em ensaios realizados em laboratório acreditado.

edp	distribuição

Requisito	Descrição	
E47 – TIPO	Ensaio de verificação do aperto Verificação da possibilidade de "roscar" à mão o mesmo estribo em diferentes porcas (pelo menos seis) com a mesma rosca nominal do estribo (ver requisito E39-TIPO), sem folgas excessivas (ver secção 8.5 do presente documento).	
E48 – TIPO	Ensaio para determinação do binário de aperto Verificação dos binários de aperto conforme os valores indicados no Quadro 9 em conjunto com as porcas aplicáveis (ver requisito E41-TIPO do presente documento). Mantido o estribo apertado durante um minuto, e desapertado em seguida, não devem observar-se deformações residuais nos seus filetes (os estribos devem continuar a poder "roscar-se" à mão nas respetivas porcas).	

Quadro 9 Binários de aperto em função do diâmetro dos estribos

Diâmetro dos estribos	Binário de aperto ^(*) (N.m)
Diametro dos estribos	Aço S 275 JR
M16	91
*Valores máximos permitidos para o binário d aperto (os valores indicados estão majorado 1.5 vezes).	

12.2 Ensaios de receção

12.2.1 Generalidades

Requisito	Descrição	
	Considerações gerais	
E49 – RECE	Os ensaios de receção têm como objetivo verificar que as armações de MT cumprem os requisitos definidos pela EDP Distribuição.	
	Estes ensaios serão realizados por amostragem, isto é, de um lote a rececionar será selecionada uma amostra sobre a qual serão executados os ensaios.	
	1ª Amostragem	
E50 – RECE	A dimensão da amostra corresponde a 5% da dimensão do lote de armações a rececionar.	
	As armações são escolhidas aleatoriamente e devem ser todas de modelos diferentes, se possível.	
	Todos os diferentes tipos de componentes que integram cada armação da amostra são ensaiados. Em cada tipo de componente de cada armação, é sujeito a ensaio 10% do número total de peças desse tipo de componente, com um mínimo de uma unidade.	

Requisito	Descrição	
	Por exemplo: A armação MT-GAL tem 3 peças do tipo de componente Br50x6. Caso esta armação esteja incluída na amostra, serão ensaiados 10% do número total de peças do tipo de componente Br50x6, ou seja, uma única peça.	
	Nota: Cada um dos conjuntos parafuso + porcas + anilhas, perno + porcas + anilhas e estribo + porcas + anilhas é considerado como um tipo de componente. Assim, são ensaiados 10% do número total de peças de cada tipo de componente (ou seja, 10% de cada um dos conjuntos completos).	
	2ª Amostragem	
	Na 2ª amostragem o número de peças do tipo de componente da armação a ensaiar é duplicado.	
E51 – RECE	Nota: Caso não existam peças suficientes desse tipo de componente na armação a ensaiar, para duplicar a amostra, são sujeitas a ensaio peças desse tipo de componente pertencentes às restantes armações da 1ª amostragem, ou na sua inexistência, ao lote de armações a rececionar.	
	Identificação de não-conformidades	
E52 – RECE	Sempre que, na 1ª amostragem, se detetar uma não-conformidade numa peça, essa peça deve ser rejeitada e deve ser feita a 2ª amostragem, sendo escolhidas novas peças do mesmo tipo de componente da armação a ensaiar.	
	Se na 2ª amostragem se identificar alguma não-conformidade numa peça, o lote desse tipo de componente é rejeitado.	
	Nota 1: Por lote de tipo de componente entende-se todas as peças desse tipo incluídas no lote a rececionar. Por exemplo, se a não-conformidade da 2ª amostragem for detetada na peça Br50x6, esta peça tem que ser substituída em todas as armações a entregar que a contenham.	
	Nota 2: Cada um dos conjuntos parafuso + porcas + anilhas, perno + porcas + anilhas e estribo + porcas + anilhas é considerado como um tipo de componente, pelo que, se na 1ª amostragem for detetada uma não-conformidade numa peça de um determinado tipo de componente (ou numa peça de um dado conjunto), na 2ª amostragem, deve ser duplicada a amostra do conjunto a ensaiar, isto é, duplicada a amostra do conjunto parafuso + porca + anilhas, pernos + porcas + anilhas ou estribos + porcas + anilhas.	

12.2.2 Ensaios a realizar à armação

Requisito	Descrição
E53 – RECE	Inspeção visual As armações devem ser sujeitas a uma inspeção visual por forma a confirmar que o embalamento é feito de acordo com o preconizado na secção 9. Deve igualmente ser verificada, para cada armação, a existência de uma etiqueta identificadora, com as características mencionadas na secção 10, e uma lista de peças segundo o descrito na secção 9.

12.2.3 Ensaios a realizar aos elementos estruturais

Requisito	Descrição
	Inspeção Visual
	Os elementos estruturais devem ser sujeitos a uma inspeção visual para verificar:
	 — A inexistência de nódulos, bolhas, pontas aguçadas, resíduos de fluxo, escorrimentos e cinzas de zinco, de acordo com a secção 6.7.1;
E54 – RECE	 O aspeto da superfície e da aderência, uniformidade e continuidade do revestimento, tal como indicado nas secções 6.7.2 e 6.7.3;
	 — A uniformidade dos diâmetros dos furos (em particular os realizados com recurso a punçoamento) e ausência de deformações, fendas e rebarbas nestes, tal como preconizado na secção 8.4;
	— A perfeição de corte e a inexistência de rebarbas nas extremidades;
	— Marcações, segundo a secção 7.
	Verificação da espessura de revestimento
	A medição da espessura local ¹⁵⁾ de revestimento deve ser realizada em 3 áreas de referência ¹⁶⁾ , cada uma com cerca de 100 cm², localizadas aleatoriamente e afastadas das extremidades, arestas ou bordos.
E55 – RECE	Em cada área são executadas 5 medições, por método magnético, segundo a norma EN ISO 2178.
	A média dos valores obtidos nas 5 medições executadas em cada área e a média dos valores obtidos no total das 15 medições não podem ser inferiores aos valores mínimos e médios apresentados no Quadro 5, respetivamente.
	Ensaios dimensionais
E56 – RECE	Com recurso aos equipamentos de medição adequados, devem ser verificadas todas as medidas indicadas nas peças desenhadas.

12.2.4 Ensaios a realizar aos pernos

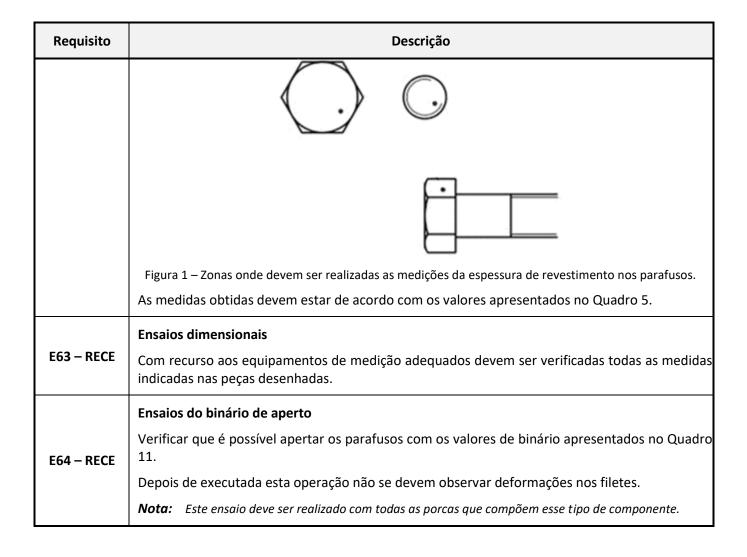
Requisito	Descrição
E57 – RECE	Verificação da rosca A verificação da rosca deve ser executada através do aperto e desaperto à mão de porcas de diâmetro igual ao do perno. Nota: Este ensaio deve ser realizado com todas as porcas que compõem esse tipo de componente.
E58 – RECE	Verificação da espessura de revestimento A medição da espessura de revestimento deve ser realizada pelo método magnético, de acordo com a norma EN ISO 2178.

¹⁵⁾ Definição de área de referência segundo NP EN ISO 1461.

¹⁶⁾ Definição de área de referência segundo NP EN ISO 1461.

Requisito	Descrição
	Em cada elemento da amostra devem ser realizadas 5 medições da espessura do revestimento. As medidas obtidas devem estar de acordo com os valores apresentados no Quadro 5.
E59 – RECE	Ensaios dimensionais Com recurso aos equipamentos de medição adequados devem ser verificadas todas as medidas indicadas nas peças desenhadas.
E60 – RECE	Ensaios do binário de aperto Verificar que é possível apertar os pernos com os valores de binário apresentados no Quadro 10. Depois de executada esta operação não se devem observar deformações nos filetes. Nota: Este ensaio deve ser realizado com todas as porcas que compõem esse tipo de componente.

Quadro 10
Binários de aperto em função do diâmetro dos pernos


Diâmetro dos pernos	Binário de aperto ^(*) (N.m)	
	Aço S 275 JR	
M16	91	

^{*}Valores máximos permitidos para o binário de aperto (os valores indicados estão majorados 1.5 vezes).

12.2.5 Ensaios a realizar aos parafusos

Requisito	Descrição					
E61 – RECE	Verificação da rosca A verificação da rosca deve ser executada através do aperto e desaperto à mão de porcas de diâmetro igual ao do parafuso. Nota: Este ensaio deve ser realizado com todas as porcas que compõem esse tipo de componente.					
E62 – RECE	Verificação da espessura de revestimento A medição da espessura de revestimento deve ser realizada pelo método magnético, de acordo com a norma EN ISO 2178. Em cada elemento da amostra devem ser realizadas 5 medições da espessura do revestimento. As medições devem ser efetuadas nas zonas indicadas na Figura 1.					

Quadro 11
Binários de aperto em função do diâmetro dos parafusos

	Binário de aperto ^(*) (N.m)			
Diâmetro dos parafusos	Parafusos de classe de resistência 5.6	Parafusos de classe de resistência 8.8		
M12	42	68		
M16	106	169		

^{*}Valores máximos permitidos para o binário de aperto (os valores indicados estão majorados 1.5 vezes).

12.2.6 Ensaios a realizar às porcas

Requisito	Descrição
E65 – RECE	Verificação da espessura de revestimento
	A medição da espessura de revestimento deve ser realizada pelo método magnético, de acordo com a norma EN ISO 2178.

Requisito	Descrição					
	Em cada elemento da amostra devem ser realizadas 5 medições da espessura do revestimento. As medições devem ser efetuadas nas zonas indicadas na Figura 2.					
	Figura 2 – Zonas onde devem ser realizadas as medições da espessura de revestimento nas porcas.					
	As medidas obtidas devem estar de acordo com os valores apresentados no Quadro 5.					
E66 – RECE	Ensaios dimensionais Com recurso aos equipamentos de medição adequados devem ser verificadas todas as medidas indicadas nas peças desenhadas.					

12.2.7 Ensaios a realizar às anilhas

Requisito	Descrição					
E67 – RECE	Verificação da espessura de revestimento A medição da espessura de revestimento deve ser realizada pelo método magnético, de acordo com a norma EN ISO 2178. Em cada elemento da amostra devem ser realizadas 5 medições da espessura do revestimento. As medidas obtidas devem estar de acordo com os valores apresentados no Quadro 5.					
E68 – RECE	Ensaios dimensionais Com recurso aos equipamentos de medição adequados devem ser verificadas todas as medidas indicadas nas peças desenhadas.					

12.2.8 Ensaios a realizar aos estribos

Requisito	Descrição				
E69 – RECE	Verificação da rosca A verificação da rosca deve ser executada através do aperto e desaperto à mão de porcas de diâmetro igual ao do estribo. Nota: Este ensaio deve ser realizado com todas as porcas que compõem esse tipo de componente.				
E70 – RECE	Verificação da espessura de revestimento				

Requisito	Descrição					
	A medição da espessura de revestimento deve ser realizada pelo método magnético, de acordo com a norma EN ISO 2178.					
	Em cada elemento da amostra devem ser realizadas 5 medições da espessura do revestimento.					
	As medidas obtidas devem estar de acordo com os valores apresentados no Quadro 5.					
E71 – RECE	Ensaios dimensionais Com recurso aos equipamentos de medição adequados devem ser verificadas todas as medidas indicadas nas peças desenhadas.					
E72 – RECE	Ensaios do binário de aperto Verificar que é possível apertar os estribos com os valores de binário apresentados no Quadro 12. Depois de executada esta operação não se devem observar deformações nos filetes.					
	Nota: Este ensaio deve ser realizado com todas as porcas que compõem esse tipo de componente.					

Quadro 12 Binários de aperto em função do diâmetro dos estribos

Diâmetro dos estribos	Binário de aperto ^(*) (N.m)		
	Aço S 275 JR		
M16	91		
*Valores máximos pern	nitidos para o binário de		

aperto (os valores indicados estão majorados 1.5 vezes).

12.3 Ensaios em curso de fabricação

Requisito	Descrição
E73 – SERIE	A indicar pelo fabricante.

ANEXO A INFORMAÇÃO RELATIVA ÀS CARACTERÍSTICAS DAS ARMAÇÕES DE MT (A PREENCHER PELO FABRICANTE)

Ficheiro, em anexo e em formato. xlsx (Microsoft Excel®), com apresentação das características das armações de MT, a preencher pelo fabricante.

ANEXO B QUADROS DE ENSAIOS DE TIPO

Designação EDP Distribuição:
Fornecedor:
Fabricante:

Referência do fabricante:

Quadro B.1- Ensaios sobre elementos estruturais

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
Ensaio de determinação de características mecânicas: Ensaios de tração e de impacto.	Requisito E05-TIPO do DMA-C67-620, NP EN 10025-1, NP EN 10025-2, EN ISO 6892-1 e EN ISO 148-1.					
Ensaio de inspeção visual: Marcação, antes e depois da galvanização por imersão a quente.	Requisito E06-TIPO do DMA-C67-620					
Ensaio de inspeção visual: Verificação de defeitos de superfície (rebarbas, asperezas ou defeitos semelhantes), antes e depois da galvanização por imersão a quente.	Requisito E07-TIPO do DMA-C67-620					
Ensaio de medição: Verificação de dimensões transversais e longitudinais (com instrumentos de medição).	Requisito E08-TIPO do DMA-C67-620					
Ensaio de medição: Verificação dos diâmetros e conicidade dos furos (com instrumentos de medição), antes e depois da galvanização por imersão a quente.	DMA-C67-620					
Ensaio de medição: Verificação de linearidade e	Requisito E10-TIPO do DMA-C67-620					

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
planicidade (com instrumentos de medição), antes e depois da galvanização por imersão a quente.						
Ensaio de medição: Verificação das distâncias entre furos a extremidades, a bordos e a arestas (com instrumentos de medição).	Requisito E11-TIPO do DMA-C67-620					
Ensaio de inspeção visual –Verificação das extremidades: perfeição do corte, não existência de rebarbas, antes e depois da galvanização por imersão a quente.	Requisito E12-TIPO do DMA-C67-620					
Ensaios de inspeção visual e medição-Verificação da uniformidade do diâmetros dos furos por punçoamento e/ou broca, da ausência de deformação, fendas, rebarbas e conicidade (se os furos foram realizados com recurso a punçoamento).	Requisito E13-TIPO do DMA-C67-620					
Ensaio de inspeção visual -Verificação do aspeto, aderência, uniformidade e continuidade do revestimento de superfície, por inspeção visual e com instrumentos de medição.	Requisito E14-TIPO do DMA-C67-620, NP 526 e NP 527.					
Ensaio de determinação da espessura local do revestimento de superfície por	Requisito E15-TIPO do DMA-C67-620, EN ISO 2178 e NP EN ISO 1461					

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
galvanização por imersão a quente - Método magnético						
Ensaio de determinação da espessura média do revestimento de superfície.	Requisito E16-TIPO do DMA-C67-620 e NP EN ISO 1461					
Ensaio de determinação das massas locais e médias do revestimento de superfície por da galvanização por imersão a quente - Processo gravimétrico.	Requisito E17-TIPO do DMA-C67-620, NP 525, NP EN ISO 1460 e NP EN ISO 1461					
Exame visual de soldaduras para deteção de eventuais defeitos na soldadura.	Requisito E18-TIPO do DMA-C67-620 e EN ISO 17637.					
Ensaios não destrutivos de soldaduras com recurso a líquidos penetrantes, e/ou com recurso a partículas magnéticas.	Requisito E19-TIPO do DMA-C67-620, NP EN ISO 3452-1 e/ou EN ISO 17638.					
Exame radiográfico de soldadura.	Requisito E20-TIPO do DMA-C67-620, EN ISO 17636-1 e EN ISO 17636- 2.					

Designação EDP Distribuição:

Fornecedor: Fabricante:

Referência do fabricante:

Quadro B.2- Ensaios sobre elementos de ligação - Pernos

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
Ensaios de medição de dimensões e forma: parte lisa, parte roscada da	Requisito E21-TIPO do DMA-C67-620.					

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
espiga, passo de rosca, etc.						
Ensaio de determinação de características mecânicas: Ensaios de tração e de impacto	Requisito E22-TIPO do DMA-C67-620, EN ISO 6892-1, NP EN 10025-2 e EN ISO 148-1.					
Ensaio de inspeção visual - Verificação do aspeto, aderência, uniformidade e continuidade do revestimento.	Requisito E23-TIPO do DMA-C67-620, NP 526 e NP 527.					
Ensaio para análise do revestimento de superfície- Verificação da qualidade do revestimento.	Requisito E24-TIPO do DMA-C67-620, NP 525, NP EN ISO 1460 e NP EN ISO 1461					
Ensaio de verificação de aperto do perno- Possibilidade de "roscar" à mão o mesmo perno em diferentes porcas com a mesma rosca nominal do perno	Requisito E25-TIPO do DMA-C67-620					
Ensaio para determinação do binário de aperto- Verificação dos binários de aperto (conforme os valores indicados no Quadro 7) em conjunto com as porcas aplicáveis e observação de deformação nos filetes.	Requisito E26-TIPO do DMA-C67-620					

Designação EDP Distribuição: Fornecedor:

Fabricante:

Referência do fabricante:

Quadro B.3- Ensaios sobre elementos de ligação - Parafusos

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
Ensaio de inspeção visual-Verificação da classe de resistência	Requisito E27-TIPO do DMA-C67-620, ISO 898-1					
Ensaio de inspeção visual-Marcação da identificação do fabricante.	Requisito E28-TIPO do DMA-C67-620					
Ensaios de medição de dimensões e forma: parte lisa, parte roscada da espiga, passo de rosca, etc., com recurso a instrumento de medição adequados.	Requisito E29-TIPO do DMA-C67-620					
Ensaio de determinação de características mecânicas- Ensaios de tração.	Requisito E30-TIPO do DMA-C67-620, ISO 898-1, EN 15048-1 e EN 15048- 2.					
Ensaio de verificação das folgas entre roscas de parafusos e roscas de porcas, com recolha de alguns espécimes.	Requisito E31-TIPO do DMA-C67-620					
Ensaio para análise do revestimento de superfície- Verificação da qualidade do revestimento.	Requisito E32-TIPO do DMA-C67-620, NP EN ISO 10684 e EN ISO 2178					
Ensaio de verificação de aperto - Possibilidade de "roscar" à mão o mesmo parafuso em diferentes porcas, com a mesma rosca nominal do parafuso						
Ensaio para determinação do binário de aperto: Verificação dos binários de aperto (conforme os valores indicados no	Requisito E34-TIPO do DMA-C67-620					

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
Quadro 8) em conjunto com as porcas aplicáveis e observação de deformações nos filetes.						

Designação EDP Distribuição:

Fornecedor: Fabricante:

Referência do fabricante:

Quadro B.4- Ensaios sobre elementos de ligação - Porcas

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
Ensaio de inspeção visual: Verificação da classe de resistência	Requisito E35-TIPO do DMA-C67-620, ISO 898-2					
Ensaios de medição de dimensões e forma, com recurso a instrumento de medição adequados	Requisito E36-TIPO do DMA-C67-620					
Ensaio de determinação de características mecânicas-Ensaio de tração.	Requisito E37-TIPO do DMA-C67-620, ISO 898-2, EN 15048-1 e EN 15048- 2.					
Ensaio para análise do revestimento de superfície- Verificação da qualidade do revestimento.	Requisito E38-TIPO do DMA-C67-620, NP EN ISO 10684 e EN ISO 2178					
Ensaio de verificação de aperto: Possibilidade de "roscar" à mão o mesmo perno mesmo parafuso e o mesmo estribo em diferentes porcas com a mesma rosca do perno, parafuso e estribo.						
Ensaio de verificação de folgas entre roscas de	Requisito E40-TIPO do DMA-C67-620					

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
pernos, parafusos e estribos e roscas de porcas, com recolha de alguns espécimes.						
Ensaio para determinação do binário de aperto: Verificação dos binários de aperto (conforme os valores indicados nos Quadros 7, 8 e 9) em conjunto com pernos, parafusos e estribos aplicáveis e observação de deformações nos filetes	Requisito E41-TIPO do DMA-C67-620					

Designação EDP Distribuição:

Fornecedor: Fabricante:

Referência do fabricante:

Quadro B.5- Ensaios sobre elementos de ligação - Anilhas

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
Ensaios de medição de dimensões e forma, com recurso a instrumento de medição adequados.	Requisito E42-TIPO do DMA-C67-620					
Ensaio de determinação das massas mínimas e médias do revestimento de superfície por da galvanização por imersão a quente - Processo gravimétrico.	Requisito E43-TIPO do DMA-C67-620, NP 525, NP EN ISO 1460 e NP EN ISO 1461					
Ensaio de determinação de características mecânicas- Verificação da dureza, com recurso	Requisito E44-TIPO do DMA-C67-620, NP EN ISO 7089 e DIN 127					

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
a instrumentos adequados.						
Ensaio para determinação do binário de aperto: Verificação de binários de aperto, conforme os valores indicados nos Quadros 7, 8 e 9 em conjunto com os pernos, parafusos, estribos e porcas aplicáveis. Observação de deformações nas anilhas.	Requisito E45-TIPO do DMA-C67-620					

Designação EDP Distribuição:

Fornecedor: Fabricante:

Referência do fabricante:

Quadro B.6- Ensaios sobre elementos de ligação - Estribos

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
Ensaio de determinação de características mecânicas - Verificação da resistência à tração.	Requisito E46-TIPO do DMA-C67-620, EN ISO 6892-1, NP EN 10025-1 e NP EN 10025-2					
Ensaio de verificação de aperto: Possibilidade de "roscar" à mão o mesmo estribo em diferentes porcas com a mesma rosca do estribo.	Requisito E47-TIPO do DMA-C67-620					
Ensaio para determinação do binário de aperto- Verificação do binário de aperto (conforme os valores indicados no Quadro 9) em conjunto com as	Requisito E48-TIPO do DMA-C67-620					

Ensaio	Normalização da referência	Resultado	Laboratório	Referência do relatório de ensaios	Pág. do relatório de ensaios	Observações
porcas aplicáveis e observação de deformação nos filetes.						

DMA-C67-620/N AGO 2018

Edição: 2 Revisão: 1

ANEXO D (INFORMATIVO)

GAMA DE APLICAÇÃO DE ARMAÇÕES DE MT

Quadro D.1

						l, <i>F</i> em	daN)									
Arr	mações d	le MT		C	9	P01	CO	202	P03	P04	M04	90W	M08	M10	G10 (=M10)	G12
				400	009	008	1000	1200	1400	1600	2250	2750	4000	2000	0052	0006
	TAN 60)		Х	Х	Х	Х	Х	Х	Х	Х					
	TAN 80)		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
	TAN 12	0				Х	Х	Х	Х	Х	Х	Х	Х	Х		
	GAL			Х	Х	Х	Х	Х								
	GAL1			Х	Х	Х	Х	Х								
	BInf-GA			Х	Х	Х	Х	Х								
	GAN 80			Х	Х	Х	Х	Х	Х	Х	Х	Х				
	GAN 12					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	GAN1 8			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
	GAN1 10					X	Х	X	X	X	Х	X	X			
	GAN1 12			х	.,	X	X	X	X	X	X	X	X	Х	Х	
	BInf-GAN1 80 BInf-GAN1 100				Х	X	X	X	X	X	X	X	X			
						X	X	X	X	X	X	X	X	· ,	· ·	
ы	BInf-GAN1 120					X	X	X	X	X	X	X	X	X	X	
	BI 75 HAL-A2	c		v		X	X	X	X	X	X	X	Х	Х	Х	
	HTP4	.3		Х	Х	Х	Х	Х	Х	Х	X X	Х				
	VAN					Х	Х	Х	Х	Х	X	Х				
	PAL			Х	х	X	X	X	^	^	^	^				
	PAN					X	X	X	х	х	Х	Х	х	х		
	Poste	c/	Al/An		,,											
	seco	: .	Ref	Х	Х	Х	x	X	x	x	x	x	x			
	Poste c															
FSC 80	s/sec vertic	c.	FL				x	x	x	x	x	x	x	x	x	
HRH			1º Nível	Х	Х	Х	Х	Х	х	Х	х	Х	Х	Х	Х	
		Face	A 2º Nível	Х	х	Х	х	Х	х	х	х	х	х	х	Х	
	DRV	Face	_p 1º Nível	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	
			2º Nível	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	Poste seco		Al/An			х	х	х	х	х	х	х	х			
	horizoi		Ref				Х	Х	х	Х	х	Х	Х			
HRFSC 100	Poste c s/sec vertic	c.	FL				х	х	х	x	х	х	х	х	х	
_		Face	_A 1º Nível	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	DRV	. acc	2º Nivel	Х	х	Х	х	Х	Х	х	х	Х	х	х	Х	
		Face	B 1º Nível	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
			2º Nível	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	

					Poste	es (códi	igo da d	abeca	e solici	tacão r	omina	l. <i>F</i> em	daN)		
Arm	nações de MT	-	9	9	P01		707	P03	P04	M04	M06	M08	M10	G10 (=M10)	G12
			400	009	800	1000	1200	1400	1600	2250	2750	4000	2000	7500	9000
	Poste c /	Al/An			х	х	х	х	х	х	х	х			
	secc. horizontal	Ref.				х	х	х	х	х	х	х			
HRFSC 120	Poste c/ ou s/secc. vertical	FL				х	х	х	х	х	х	х	х	х	
_	Face	A 1º Nível	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	DRV	2º Nivel	X	X	X	X	X	X	X	X	X	X		X	
	Face	B 2º Nível	X	Х	Х	X	X	Х	Х	Х	Х	Х	Х	X	
HRFSC 80 c/ BI 75	AI/A	\n	х	х	х	х	х	х	х	х	х	х			
HRF c/ E	Ref/	FL				х	х	х	х	х	х	х	x x x x x x x x x x x x x x x x x x x	x	
2100	AI/A	۸n			х	х	х	х	х	х	х	х			
HRFSC 100 c/ Bl 75	Ref/	FL				х	х	х	х	х	х	х	х	Х	
120 75	AI/A	۸n			х	х	х	х	х	х	х	х			
HRFSC 120 c/ BI 75	Ref/	FL				х	х	х	х	х	х	х	х	Х	
	AI/A	An			х	х	х	х	х	х	х	х	Х	Х	х
C3 100	Ref/	FL			х	х	х	х	х	х	х	х	х	х	х
HRFSC3 1	DRV	Face A			х	х	х	х	х	х	х	х	х	Х	х
	DRV	Face B			х	х	х	х	х	х	х	х	х	х	х
HRFSC3 120	AI/A	۸n			х	х	х	х	х	х	х	х	х	Х	х
HRFSC	Ref/	FL			х	х	х	х	х	х	х	х	х	х	х
HRFSC3 140	AI/A	۸n			х	х	х	х	х	х	х	х	х	х	х
HRFSC	Ref/	FL			х	х	х	х	х	х	х	х	х	Х	х

Nota 1: A BI 75 é considerada uma armação para fixação de 1 condutor (arco de ligação) por meio de uma cadeia de suspensão, em complemento da armação HRFSC.

Nota 2: A armação HTP4 é utilizada em postes de betão para PT aéreos (DMA- C67-212).

ANEXO E (INFORMATIVO)

QUADRO SÍNTESE DE APLICAÇÃO DAS ARMAÇÕES DE MT

Quadro E.1

Tipo de	Referência da armação	abrangi tipo de a Solici nominal	e postes ida pelo armação tação do poste, laN)	isola	oo de mento			Aplic	ação n	a linha	
armação	Referência	Mín.	Máx.	Amarração	Suspensão	Alinhamento	Ângulo	Reforço	Fim de linha	Derivação	Posto de transformação aéreo TP4
Triângulo	TAN	400	5000	х			х	х	х		
	GAL	400	1200		x	х					
	GAL1	400	1200		х	х					
Galhardete	BInf-GAL1	400	1200		х	х					
Gamardete	GAN	400	7500	х			х				
	GAN1	400	7500	х			х				
	BInf-GAN1	400	7500	х			х				
	BI	800	7500		х						
	HAL-A2S	400	2750	х	х	х					
	HTP4	2250	2250	х							х
Esteira horizontal	HRFSC	400	7500	х		х	х	х	х	х	
Horizontal	HRFSC c/ BI 75	400	7500	х		х	х	х	х		
	HRFSC3	800	9000	х		х	х	х	х	х	
Esteira vertical	VAN	800	2750	х			х	х	х		
Pórtico	PAL	400	1200		x	х					
FOILICO	PAN	800	5000	х			х	х	х	x Derivação	

ANEXO F (INFORMATIVO)

ARMAÇÕES DE MT

F.1 MASSAS (APROXIMADAS) DAS ARMAÇÕES DE MT (kg)

Quadro F.1

							/ / 1				. ~			1 21		
						Poste	es (codi	go da c	abeça	e solici	taçao n	omina	I, F em	daN)		
Arn	BI 75 HAL-A2S HTP4 VAN PAL PAN Poste c/ secc. horizontal Poste c/ ou s/secc. vertical Face A Pace B Poste c/ secc. horizontal Poste c/ Al/An Ref Al/An Al/An Al/An Al/An Al/An Al/An Al/An Ref Poste c/ secc. horizontal Ref		Š	2	P01	C	702	P03	P04	M04	90W	M08	M10	G10 (=M10)	612	
				400	009	008	1000	1200	1400	1600	2250	2750	4000	2000	7500	0006
	TAN 60)		52.6	52.6	52.6	52.6	52.6	52.9	52.9	52.9	-	-	-	-	-
	TAN 80)		70.2	70.2	70.2	70.2	70.2	70.2	71.4	71.4	71.4	72.6	72.6	-	-
	TAN 120)		-	-	117.4	117.4	117.4	117.4	117.4	119.1	119.1	119.1	119.6	-	-
	GAL			36.6	36.6	36.6	36.6	36.6	-	-	-	-	-	-	-	-
	GAL1			45.2	45.2	45.2	45.2	45.2	-	-	-	-	-	-	-	-
	BInf-GAL	.1		21.0	21.0	21.0	21.0	21.0	-	-	1	-	-	-	-	-
	GAN 80)		84.3	84.3	84.3	84.3	84.3	84.3	85.5	85.5	85.5	ı	-	-	-
	GAN 12	0		-	-	163.1	163.1	163.1	163.1	164.3	164.3	165.4	165.4	166.6	166.6	-
	GAN18	0		98.9	98.9	98.9	98.9	98.9	100.2	100.2	100.2	102.2	102.2	-	-	-
	GAN1 10	00		-	-	140.1	140.1	140.1	141.3	141.3	141.3	143.4	143.4	-	-	-
				-	-	177.4	177.4	177.4	177.4	177.8	177.8	179.8	181.1	181.1	181.1	-
ВІ					44.6	44.6	44.6	44.6	45.0	45.0	45.0	45.5	45.5	-	-	-
Bli	nf-GAN1		-	-	62.3	62.3	62.3	62.8	62.8	62.8	63.2	63.2	-	-	-	
Bli	BInf-GAN1 120					78.2	78.2	78.2	78.2	78.6	78.6	78.7	79.5	79.5	79.5	-
	BI 75			-	-	21.3	21.3	21.3	21.3	21.6	21.6	22.0	22.0	22.1		
	HAL-A2	S		74.3	74.3	74.3	74.3	74.3	74.3	74.3	74.3	74.9	-	-	-	-
	HTP4			-	-	-	-	-	-	-	23.6	-	-	-	-	-
	VAN			-	-	56.8	56.8	56.8	56.8	56.8	58.2	58.2	-	-	-	-
	PAL			59.5	59.5	59.5	59.5	59.5	-	-	-	-	-	-	-	-
	PAN			-	-	112.8	112.8	112.8	112.8	112.8	112.8	114.4	114.4	114.4	-	-
			Al/An	57.1	57.1	57.1	57.1	57.1	57.1	57.1	57.1	58.1	58.1	-	-	-
			Ref	-	-	-	57.6	57.6	58.1	58.1	59.0	59.0	59.5	-	-	-
FSC 80	Poste c/ s/sec	ou c.	FL	-	-	-	57.6	57.6	57.6	57.6	58.5	58.5	59.0	60.0	60.0	-
HRF			1º Nível	53.2	53.2	53.2	53.2	53.2	53.2	53.2	53.2	54.2	54.2	54.6	54.6	-
		гасе А	2º Nível	53.2	53.2	53.2	53.2	53.2	53.7	53.7	53.7	54.6	54.6	54.6	54.6	-
		Eaca D	1º Nível	52.7	52.7	52.7	53.7	53.7	53.7	53.7	54.6	54.6	55.6	56.6	56.6	-
		гасе В	2º Nível	53.2	53.2	53.2	53.2	53.2	53.2	54.1	54.1	55.1	55.1	56.0	56.0	-
			Al/An	-	ı	81.0	81.0	81.0	81.0	81.0	81.0	81.9	81.9	-	-	-
			Ref	-	-	-	81.9	81.9	81.9	81.9	82.8	82.8	82.8	-	-	-
HRFSC 100	Poste c/ s/second vertic	ou c.	FL	-	-	-	81.4	81.4	81.4	81.4	82.4	82.4	83.8	83.8	83.8	-
	DRV	Face A	1º Nível	76.2	76.2	76.2	76.2	76.2	76.2	76.2	76.2	77.2	77.2	77.7	77.7	-
	אט	i ace A	2º Nível	76.2	76.2	76.2	76.2	76.2	76.7	76.7	76.7	77.7	77.7	77.7	77.7	-

						Poste	es (códi	igo da d	abeça	e solici	tação r	nomina	l, <i>F</i> em	daN)		
Arm	ações d	e MT		ood	9	P01	CO	707	P03	P04	M04	90W	M08	M10	G10 (=M10)	G12
				400	009	800	1000	1200	1400	1600	2250	2750	4000	2000	7500	0006
		Face	B 1º Nível		76.7	76.7	76.7	76.7	76.7	77.7	77.7	78.6	78.6	79.1	79.1	-
	Poste	c /	2º Nível Al/An	77.2	77.2	77.2 109.8	77.2 109.8	77.2 109.8	77.2 109.8	78.2 109.8	78.1 109.8	79.1 110.7	79.1 110.7			-
	secc	.	Ref.	_	_	-	110.7	110.7	110.7	110.7	111.7	111.7				_
	horizor Poste c/		itei.	_	_	_	110.7	110.7	110.7	110.7	111./	111.7	112.1	_	_	
HRFSC 120	s/seco	c.	FL	-	-	-	110.2	110.2	110.2	110.2	111.2	111.2	112.6	112.6	112.6	-
_		Face .	A 1º Nível							103.3						-
	DRV		2º Nivel		103.3	103.3		103.3		103.8					104.8	
		Face	B 1º Nível 2º Nível		103.8 104.3	103.8 104.3	103.8 104.3	103.8 104.3	103.8 104.3		104.8 105.2	105.7 106.2				-
280		AI/A	·I	78.9	78.9	78.9	78.9	78.9	79.7	79.7	79.7	80.9	104.3 104.8 104.8 104.8 105.7 106.2 106.2 106.7 80.9 - 82.4 82.4 105.2 - 106.7 106.7 133.3 -	-	-	
HRFSC 80 c/ BI 75		Ref/I	FL	-	-	-	79.8	79.8	79.8	79.8	80.9	80.9	82.4	82.4	82.4	-
75		Al/A	n	-	-	103.6	103.6	103.6	104.0	104.0	104.0	105.2	105.2	-	-	-
HRFSC 100 c/ BI 75		Ref/I	FL	-	-	-	104.0	104.0	104.0	104.0	105.1	105.1	106.7	106.7	106.7	-
: 120 75		Al/A	n	-	-	131.7	131.7	131.7	132.0	132.0	132.0	133.3	133.3	-	-	-
HRFSC 120 c/ BI 75		Ref/I	FL	-	-	-	132.2	132.2	132.2	132.2	133.4	133.4	134.9	134.9	134.9	-
		Al/A	n	-	-	113.4	113.4	113.4	113.4	113.4	113.4	114.3	114.3	114.8	114.8	114.8
HRFSC3 100		Ref/I	FL	-	-	113.4	113.4	113.4	114.3	114.3	114.3	115.3	115.8	116.7	116.7	116.7
HRFSC	DR	ΚV	Face A	-	-	117.7	118.0	118.0	118.3	118.6	118.6	120.8	121.3	122.0	122.0	123.4
	DR	١V	Face B	-	-	112.1	112.1	112.1	112.1	112.4	113.3	113.7	114.6	114.9	114.9	115.9
3 120		Al/A	n	-	-	155.4	155.4	155.4	155.4	155.4	155.4 155.4 156.4 156.4 156.8 156.8		156.8	156.8		
HRFSC3 120		Ref/I	FL	-	-	155.4	1554	155.4	156.4	156.4	156.4	157.3	157.8	158.7	158.7	158.7
3 140		Al/A	n	-	-	205.8	205.8	205.8	205.8	205.8	205.8	206.7	206.7	207.2	207.2	207.2
HRFSC3 140		Ref/I	FL	-	-	205.8	205.8	205.8	206.7	206.7	206.7	207.2	208.6	79.1 79.7 79.6 79.7 112.6 112.6 104.8 104.1 106.2 106.7 106.7 106.7 134.9 134.1 114.8 114.1 116.7 116.1 122.0 122.1 114.9 114.1	208.6	209.1

F.2 ELEMENTOS ESTRUTURAIS DAS ARMAÇÕES DE MT – QUANTIDADE

Quadro F.2

									Ele	ment	os es	trutu	rais								
Armaçõe	s de MT	UPN65	UPN100	L50x50x5	9x09x09T	L75x75x8	L80x80x8	L100x100x10	L120x120x12	L140x140x14	Br50x6	Вг60х6	Br80x8	Br120x10	СНЗ	AQ50x6	AQ100x12	FLT40x25x3	OEV-R16	BI 60	BI 75 ^(*)
TAN	60	-	-	-	2	-	-	-	-	-	-	-	-	2	-	2	-	2	2	1	-
TAN	80	•		-	-	-	2	-	-	-	1	-	-	2	1	2	-	2	2	1	-
TAN :	120	-	-	-	-	-	-	-	2	-	-	-	-	2	-	2	-	2	2	1	-
GA	L	3	-	-	-	-	-	-	-	-	3	-	-	-	-	6	-	3	-	-	-
GAI	.1	4	-	1	-	-	-	-	-	-	3	-	-	-	-	6	-	3	-	-	-
BInf-G	AL1	2	-	1	-	-	-	-	-	-	1	-	-	-	-	2	-	1	-	-	-
GAN	80	-	-	-	-	-	6	-	-	-	6	-	-	-	-	-	-	3	-	-	-
GAN	120	-	-	-	-	-	-	-	6	-	6	-	-	-	-	-	-	3	-	-	-
GAN1	L 80	-	-	2	-	-	6	-	-	-	6	-	-	-	-	2	-	3	-	-	-
GAN1	100	-	-	2	-	-	-	6	-	-	6	-	-	-	-	2	-	3	-	-	-
GAN1	120	-	-	2	-	-	-	-	6	-	6	-	-	-	-	2	-	3	-	-	-
BInf-GA	N1 80	1	-	2	-	-	2	-	-	-	2	-	-	-	-	2	-	1	-	1	-
BInf-GAI	N1 100	1	-	2	-	-	-	2	1	-	2	-	-	-	-	2	-	1	-	1	-
BInf-GAI	N1 120	-	-	2	-	-	-	-	2	-	2	-	-	-	-	2	-	1	-	-	-
BI 75		-	-	-	-	1	-	-	-	-	-	-	-	-	-	2	-	1	-	-	-
HAL-A2S		-	2	-	-	-	-	-	-	-	-	2	-	-	2	-	1	1	2	-	-
НТЕ	94	1	-	-	2	-	-	-	1	-	1	-	1	1	-	-	-	1	-	1	-
VA	N	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6	-	3	6	3	-
PA	L	-	1	-	-	-	-	-	1		-	-	2	-	-	4	-	2	-	-	-
PA	Z	•	-	1	-	1	•	2	1		•	-	-	4	1	-	-	2	-	1	-
Ų	Al/An	ı	1	-	1	1	4	-	1	-	ı	-	-	2	-	-	-	1	-	-	-
HRFSC 80	Ref/FL	ı	1	1	ı	-	4	-	-	-	1	1	1	2	1	1	-	1	-	1	-
I	DRV	-	-	-	-	-	3	-	-	-	-	-	-	2	-	-	-	1	-	-	-
Ų	Al/An	-	-	-	-	-	-	4	-	-	-	-	-	2	-	-	-	1	-	-	-
HRFSC 100	Ref/FL	ı	1	-	1	-	ı	4	-	-	ı	1	1	2	-	1	-	1	-	1	-
	DRV	-	-	-	-	-	-	3	-	-	-	-	-	2	-	-	-	1	-	-	-
U _	Al/An	-	-	-	-	-	-	-	4	-	-	-	-	2	-	-	-	1	-	-	-
HRFSC 120	Ref/FL	-	-	-	-	-	-	-	4		-	-	-	2	-	-	-	1	-	-	-
<u>T</u>	DRV	-	-	-	-	-	-	-	3	-	-	-	-	2	-	-	-	1	-	-	-
C 80 75	Al/An	-	-	1	-	1	4	1	1	1	-	-	-	2	1	2	-	2	-	-	1
HRFSC 80 c/ BI 75	Ref/FL	-	-	-	-	-	4	-	1	-	-	-	-	2	-	2	-	2	-	-	1
100 c/ BI 75	Al/An	-	-	-	-	-	-	4	-	-	-	-	-	2	-	2	-	2	-	-	1
HRFSC 100 c/ BI 75	Ref/FL	1	ı	ı	-	-	-	4	1	-	-	1	ı	2	1	2	-	2	-	1	1

										Ele	ment	os es	trutu	rais								
Armações	s de	MT	19NAN	UPN100	T20x20x2	9×09×09T	L75x75x8	R80x80x8	L100x100x10	L120x120x12	L140x140x14	Br50x6	Br60x6	Br80x8	Br120x10	СНЗ	AQ50x6	AQ100x12	FLT40x25x3	OEV-R16	BI 60	BI 75 ^(*)
HRFSC 120 c/ BI 75	Al/	'An	-	-	-	-	1	1	-	4	1	-	-	1	2	1	2	-	2	-	-	1
HRFSC	Ref	/FL	-	-	-	-	-	-	-	4	-	-	-	-	2	-	2	-	2	-	-	1
	Al/	Άn	-	-	-	-	-	1	4	-	-	-	-	-	2	-	-	-	1	-	-	-
Re	Ref	/FL		-	-	-	1	1	4	-	1	-	-	1	2	1	1	-	1	-	- 1	-
HRFSC3 100	^	Face A	-	-	-	-	-	1	5	-	-	-	-	-	2	-	-	-	1	-	-	-
	DRV	Face B	-	-	-	-	-	1	3	-	ı	-	-	ı	2	-	-	-	1	-	-	-
8 -	Al/	'An	-	-	-	-	-	-	-	4	-	-	-	-	2	-	-	-	1	-	-	-
HRFSC3 120	Ref	/FL	-	-	-	-	-	-	-	4	-	-	-	-	2	-	-	-	1	-	-	-
SC3	Al/	'An	1	-	-	-	-	-	-	-	4	-	-	1	2	-	-	-	1	-	-	-
HRFSC3 140	Ref	/FL	-	-	-	-	-	-	-	-	4	-	-	-	2	-	-	-	1	-	-	-

F.3 ELEMENTOS DE LIGAÇÃO E FIXAÇÃO DAS ARMAÇÕES DE MT – QUANTIDADE Quadro F.3

	Ele	mentos de ligaç	ão - Quantidad	e	Elementos
	Per	nos	Parafi	ısos	de fixação - Quantidade
Armações de MT	-	c/ quatro porcas+ quatro anilhas planas		c/rosca parcial, uma anilha plana+uma anilha de mola	Estribos
TAN 60	6	4	2	-	5
TAN 80	6	4	2	-	5
TAN 120	6	4	2	-	5
GAL	6	-	3	3	3
GAL1	5	2	3	4	3
BInf-GAL1	1	2	1	2	1
GAN 80	6	9	3	-	6
GAN 120	6	9	3	-	6

				Ele	mentos de ligaç	ão - Quantidad	e	Elementos
				Per	nos	Parafi	ısos	de fixação - Quantidade
Ar	mações de	e MT		-	c/ quatro porcas+ quatro anilhas planas		plana+uma	Estribos
	GAN1 80)		5	11	3	2	6
	GAN1 10			5	11	3	2	6
	GAN1 12			5	11	3	2	6
	BInf-GAN1			1	5	1	2	2
	Inf-GAN1			1	5	1	2	2
В	Inf-GAN1	120		1	5	1	2	2
-	BI 75			2	-	1	-	1
	HAL-A2S	•		-	6	1	2	3
	HTP4 VAN			2	-	1	2	3
				12 4	-	3 2	-	3
	PAL PAN			4	6	2	-	3 6
	Docto o/							
	secc.	AI,	/An	2	4	1	4	6
	horizontal	F	Ref	2	4	1	4	6
80	Poste c/ ou s/ secc. vertical	ı	FL	2	4	1	4	6
HRFSC 80			1º Nível	-	6	1	2	3
	DRV	A	2º Nível	-	6	1	2	3
			1º Nível	-	6	1	2	3
		В	2º Nível	-	6	1	2	3
	Poste c/ secc.	Al,	/An	2	4	1	4	6
	horizontal	R	Ref	2	4	1	4	6
SC	Poste c/ ou s/ secc. vertical		FL	2	4	1	4	6
HRFSC 100		Face		-	6	1	2	3
	DRV	Α	2º Nível	-	6	1	2	3
	21.1		1º Nível	-	6	1	2	3
		В	2º Nível		6	1	2	3
HRFS C 120	Poste c/ secc.	Al,	/An	2	4	1	4	6
H)	secc. horizontal	F	tef	2	4	1	4	6

				Ele	mentos de ligaç	ão - Quantidad	e	Elementos
				Per	nos	Parafi	ısos	de fixação - Quantidade
Ar	mações do	e MT			c/ quatro porcas+ quatro anilhas planas	c/rosca total, c/ uma porca+ uma anilha plana+uma anilha de mola	c/rosca parcial, uma anilha plana+uma anilha de mola	Estribos
	Poste c/ ou s/ secc. vertical	F	L	2	4	1	4	6
		Face	1º Nível	-	6	1	2	3
	DRV	Α	2º Nível	-	6	1	2	3
	DIV	Face	1º Nível	-	6	1	2	3
		В	2º Nível	-	6	1 2		3
HRFSC 80 c/ BI 75	A	l/An		4	4	2	4	8
HR 8C BI	Re	ef/FL		4	4	2	4	8
=SC c/ BI 5	Α	l/An		4	4	2	4	8
HRFSC 100 c/ BI 75	Re	ef/FL		4	4	2	4	8
-sc c/ 75	Α	l/An		4	4	2	4	8
HRFSC 120 c/ BI 75	Re	ef/FL		4	4	2	4	8
	Α	l/An		2	4	1	4	7
HRFSC3 100	Re	ef/FL		2	4	1	4	7
HRI 1	DRV	Fac	e A	2	6	1	2	3
	DRV	Fac	е В	2	6	1	2	3
HRFSC3 120	A	l/An		2	4	1	4	7
HRF 1.	Re	ef/FL		2	4	1	4	7
533	A	l/An		2	4	1	4	7
HRFSC3 140	Re	ef/FL		2	4	1	4	7

F.4 MASSA TOTAL (APROXIMADA) DOS PERNOS COM PORCAS E ANILHAS POR ARMAÇÃO E POSTE (kg) Quadro F.4

Quadito F.4													
			Poste	s (códi	go da d	cabeça	e solici	tação n	omina	l, <i>F</i> em	daN)	,	
antidade	ood	8	P01	COG	702	P03	P04	M04	90W	M08	M10	G10 (=M10)	G12
Qu	400	009	008	1000	1200	1400	1600	2250	2750	4000	2000	7500	0006
4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	-	-	-	-	-
4	2.4	2.4	2.4	2.4	2.4	2.4	3.1	3.1	3.1	3.4	3.4	-	-
2	1.2	1.2	1.2	1.2	1.2	1.2	1.7	1.7	1.7	1.9	1.9	-	- -
4	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.8	2.8	2.8	2.8	-	-
6	3.5	3.5	3.5	3.5	3.5	-	-	-	-	-	-	-	-
2 5	1.2 2.7	1.2 2.7	1.2 2.7	1.2 2.7	1.2 2.7	-	-	1 1	1 1	-	1	-	-
2	1.2 0.5	1.2 0.5	1.2 0.5	1.2 0.5	1.2 0.5	-	-	-	-	-	-	-	-
9 6	5.5 3.2	5.5 3.2	5.5 3.2	5.5 3.2	5.5 3.2	5.5 3.2	6.2 3.7	6.2 3.7	6.2 3.7	-	-	-	-
9 6	-	-	5.5 3.2	5.5 3.2	5.5 3.2	5.5 3.2	6.2 3.7	6.2 3.7	6.9 4.2	6.9 4.2	7.6 4.7	7.6 4.7	-
5	3.0	3.0	3.0	3.0	3.0	3.4	3.7	3.7	3.8	4.6 3.8	-	-	-
1	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.7	0.7	-	-	- -
5 4	-	-	3.0 1.8	3.0 1.8	3.0 1.8	3.4 2.2	3.4 2.2	3.4	3.8 2.8	3.8 2.8	-	-	-
6	-	-	3.7	3.7	3.7	3.7	3.7	3.7	4.6	5.1	5.1	5.1	- -
4	-	-	2.2	2.2	2.2	2.2	2.2	2.2	3.1	3.1	3.1	3.1	-
5 1	3.0 0.5	3.0 0.5	3.0 0.5	3.0 0.5	3.0 0.5	3.4 0.6	3.4 0.6	3.4 0.6	3.8 0.7	3.8 0.7	-	-	-
5	-	-	3.0 0.5	0.5	3.0 0.5	3.4 0.6	3.4 0.6	0.6	3.8 0.7	3.8 0.7	-	-	-
1	-	-	0.6	0.6	0.6	0.6	0.6	0.6	0.8	0.8	0.8	0.8	-
											1.9	1.9	-
	3./	3./	3./	3./		3./			4.1	-	-	-	
6	-	-	3.7	3.7	3.7	3.7	3.7	4.7	4.7	-	-	-	<u>-</u> -
						-	-	5.7	5.7	-	-	-	<u>-</u>
6	-	-	3.6	3.6	3.6	3.6	3.6	3.6	4.6	4.6	4.6	-	-
	4 2 4 4 2 6 2 5 2 5 2 1 9 6 6 9 6 5 4 1 6 5 4 1 5 1 5 1 1 5 1 1 5 1 1 1 1 1 1 1 1	4 2.4 4 2.2 2 1.1 4 2.4 4 2.2 2 1.2 4 2.4 4 2.2 2 1.2 6 3.5 2 1.2 5 2.7 2 1.2 1 0.5 9 5.5 6 3.2 9 - 6 - 6 3.2 9 - 6 - 6 3.2 5 3.0 4 1.8 1 0.5 6 - 5 - 4 - 1 - 5 3.0 1 0.5 5 - 1 - 2 1.1 6 3.7 2 1.2 1 1.1 6 3.7 2 - 6 - 6 - 6 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	4 2.4 2.4 4 2.2 2.2 2 1.1 1.1 4 2.4 2.4 4 2.2 2.2 2 1.2 1.2 4 2.4 2.4 4 2.2 2.2 2 1.2 1.2 6 3.5 3.5 2 1.2 1.2 5 2.7 2.7 2 1.2 1.2 1 0.5 0.5 9 5.5 5.5 6 3.2 3.2 9 - - 6 3.2 3.2 9 - - 6 3.2 3.2 9 - - 6 3.2 3.2 5 3.0 3.0 4 1.8 1.8 1 - - 5 - -	Perform Reserve to the content of the con	Per p	Paramona Resident (Color) Resident (Color)	Property Residence Residence <th< td=""><td>Perfect Reserve of the content of the co</td><td>Perent Name Name</td><td> Page Page </td><td>Peritary Reserve of the control of the co</td><td> \$align***</td><td> Page Page </td></th<>	Perfect Reserve of the content of the co	Perent Name Name	Page Page	Peritary Reserve of the control of the co	\$align***	Page Page

							Poste	es (códi	go da d	abeça	e solici	tação n	omina	l, <i>F</i> em	daN)		
Aı	rmaçõe	s de MT		Quantidade	G	2	P01	Š	20	P03	P04	M04	M06	M08	M10	G10 (=M10)	G12
				Ön	400	009	008	1000	1200	1400	1600	2250	2750	4000	2000	7500	0006
	Do	ste	Al/An	4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	3.1	3.1	-	-	-
		secc.	AI/AII	2	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.4	1.4	-	-	-
	1	zontal	Ref	4	-	-	-	2.8	2.8	3.1	3.1	3.7	3.7	4.0	-	-	-
0			_	2	-	-	-	1.2	1.2	1.4	1.4	1.7	1.7	1.9	-	-	-
HRFSC 80		ste s/ secc.	FL	4	-	-	-	2.8	2.8	2.8	2.8	3.4	3.4	3.7	4.3	4.3	-
IRFS		tical	rL -	2	-	-	-	1.2	1.2	1.2	1.2	1.6	1.6	1.7	2.0	2.0	_
	VC1		1º Nível	6	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	5.1	5.1	5.5	5.5	-
		Face A	2º Nível	6	4.1	4.1	4.1	4.1	4.1	4.6	4.6	4.6	5.5	5.5	5.5	5.5	-
	DRV	D	1º Nível	6	3.6	3.6	3.6	4.6	4.6	4.6	4.6	5.5	5.5	6.5	6.5	6.5	-
		Face B	2º Nível	6	4.1	4.1	4.1	4.1	4.1	4.1	5.0	5.0	6.0	6.0	6.9	6.9	-
	Do	ste	Al/An	4	-	-	2.4	2.4	2.4	2.4	2.4	2.4	3.1	3.1	-	-	-
		secc.	AI/AII	2	-	-	1.1	1.1	1.1	1.1	1.1	1.1	1.4	1.4	-	-	-
		zontal	Ref	4	-	-	-	3.1	3.1	3.1	3.1	3.7	3.7	4.0	-	-	-
				2	-	-	-	1.4	1.4	1.4	1.4	1.7	1.7	1.9	-	-	-
RFSC 100		ste	F	4	-	-	1	2.8	2.8	2.8	2.8	3.4	3.4	4.3	4.3	4.3	-
HRFSC 100	-	s/ secc. tical	. FL	2	-	-	-	1.2	1.2	1.2	1.2	1.6	1.6	2.0	2.0	2.0	
	Vei	ticai	1º Nível	6	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	5.1	5.1	5.5	5.5	-
		Face A 2º Nív	2º Nível	6	4.1	4.1	4.1	4.1	4.1	4.6	4.6	4.6	5.5	5.5	5.5	5.5	-
	DRV Face I		1º Nível	6	4.6	4.6	4.6	4.6	4.6	4.6	5.5	5.5	6.5	6.5	7.0	7.0	-
		ғасе в	2º Nível	6	5.1	5.1	5.1	5.1	5.1	5.1	6.0	6.0	7.0	7.0	7.4	7.4	-
	De	vet o	Al/An	4	-	-	2.4	2.4	2.4	2.4	2.4	2.4	3.1	3.1	-	-	-
		ste secc.	AI/AII	2	-	-	1.1	1.1	1.1	1.1	1.1	1.1	1.4	1.4	-	-	-
	1	zontal	Ref	4	-	-	-	3.1	3.1	3.1	3.1	3.7	3.7	4.0	-	-	-
			I.C.	2	-	-	-	1.4	1.4	1.4	1.4	1.7	1.7	1.9	-	-	-
HRFSC 120		ste s/ secc.	FL -	4	-	-	-	2.8	2.8	2.8	2.8	3.4	3.4	4.3	4.3	4.3	-
エ	ver	tical		2	-	-	-	1.2	1.2	1.2	1.2	1.6	1.6	2.0	2.0	2.0	-
		Face A	1º Nível	6	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	5.1	5.1	5.5	5.5	-
	DRV		2º Nível	6	4.1	4.1	4.1	4.1	4.1	4.6	4.6	4.6	5.5	5.5	5.5	5.5	-
		Face B	1º Nível	6	4.6	4.6	4.6	4.6	4.6	4.6	5.5	5.5	6.5	6.5	7.0	7.0	-
			2º Nível	6 4	5.1	5.1 2.2	5.1	5.1	5.1	5.1	6.0	6.0	7.0	7.0	7.4 -	7.4	-
, B	٨١	/An	- 10°furo	2	2.2 1.0	1.0	2.2 1.0	2.2	2.2	2.5	2.5	2.5	3.1 1.4	3.1	-	-	-
HRFSC 80 c/ BI 75	Al	<i>,</i>	11°furo	2	1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.8	1.8	-	-	
C 8(-	4	-	-	-	2.8	2.8	2.8	2.8	3.5	3.5	4.4	4.4	4.4	-
RFS	Re	f/FL	10°furo	2	-	-	-	1.3	1.3	1.3	1.3	1.6	1.6	2.1	2.1	2.1	-
エ			11°furo	2	-	-	-	1.1	1.1	1.1	1.1	1.3	1.3	1.4	1.4	1.4	
31			-	4	-	-	2.5	2.5	2.5	2.5	2.5	2.5	3.1	3.1	-	-	-
HRFSC 100 c/ BI 75	Al/An	10°furo	2	-	-	1.1	1.1	1.1	1.1	1.1	1.1	1.4	1.4	-	-	-	
100 75		11°fu		2	-	-	1.2	1.2	1.2	1.5	1.5	1.5	1.8	1.8	-	-	-
SC 1		-		4	-	-	-	2.8	2.8	2.8	2.8	3.5	3.5	4.4	4.4	4.4	-
IR F.	Ref/FL		10°furo	2	-	-	-	1.3	1.3	1.3	1.3	1.6	1.6	2.1	2.1	2.1	-
			11°furo	2	-	-	-	1.1	1.1	1.1	1.1	1.3	1.3	1.4	1.4	1.4	-
SC c/			-	4	-	-	2.5	2.5	2.5	2.5	2.5	2.5	3.1	3.1	-	-	-
HRFSC 120 c/ BI 75	Al	Al/An 10°furo	2	-	-	1.1	1.1	1.1	1.1	1.1	1.1	1.4	1.4	-	-	-	
<u> </u>		11°furo		2	-		1.1	1.1	1.1	1.4	1.4	1.4	1.7	1.7	-	-	-

						Poste	es (códi	go da o	abeça	e solici	tação n	nomina	l, <i>F</i> em	daN)		
Ar	Armações de MT		Quantidade		9	P01		207	P03	P04	M04	90W	M08	M10	G10 (=M10)	G12
			2no	400	009	800	1000	1200	1400	1600	2250	2750	4000	2000	7500	0006
		-	4	-	-	-	2.8	2.8	2.8	2.8	3.5	3.5	4.4	4.4	4.4	-
	Ref/FL	10°furo	2	-	-	-	1.3	1.3	1.3	1.3	1.6	1.6	2.1	2.1	2.1	-
		11°furo	2	-	-	-	1.1	1.1	1.1	1.1	1.3	1.3	1.4	1.4	1.4	-
	Al/Ar	1	4	-	-	2.4	2.4	2.4	2.4	2.4	2.4	3.1	3.1	3.4	3.4	3.4
	7.1,7.1		2	-	-	1.1	1.1	1.1	1.1	1.1	1.1	1.4	1.4	1.7	1.7	1.7
HRFSC3 100	Ref/F	I	4	-	-	2.4	2.4	2.4	3.1	3.1	3.1	3.7	4.0	4.6	4.6	4.6
3	,	_	2	-	-	1.2	1.2	1.2	1.4	1.4	1.4	1.7	1.9	2.2	2.2	2.2
3FS	DRV	Face A	6	-	-	4.1	4.1	4.1	4.1	4.1	4.1	5.1	5.1	5.1	5.1	5.6
Ī			2	-	-	1.4	1.4	1.4	1.4	1.4	1.4	2.0	2.0	2.0	2.0	2.3
	DRV	Face B	6	-	-	4.6	4.6	4.6	4.6	4.6	5.5	5.5	6.5	6.5	6.5	7.4
			2	-	-	1.2	1.2	1.2	1.2	1.6	1.6	1.9	1.9	2.2	2.2	2.2
κ	Al/Ar	1	4	-	-	2.4	2.4	2.4	2.4	2.4	2.4	3.1	3.1	3.4	3.4	3.4
HRFSC3 120	,		2	-	-	1.1	1.1	1.1	1.1	1.1	1.1	1.4	1.4	1.6	1.6	1.6
HR 1	Ref/F	L	4	-	-	2.4	2.4	2.4	3.1	3.1	3.1	3.7	4.0	4.6	4.6	4.6
	Nei/12		2	-	-	1.2	1.2	1.2	1.4	1.4	1.4	1.7	1.9	2.2	2.2	2.2
m	Al/An		4	-	-	2.4	2.4	2.4	2.4	2.4	2.4	3.1	3.1	3.4	3.4	3.4
HRFSC3 140			2	-	-	1.1	1.1	1.1	1.1	1.1	1.1	1.4	1.4	1.6	1.6	1.6
HRF 1,			2	-	-	1.1	2.4 1.1	1.1	3.1	3.1 1.4	3.1 1.4	3.4 1.6	4.3 2.1	4.3 2.1	4.3 2.1	2.2

F.5 MASSA TOTAL (APROXIMADA) DOS PARAFUSOS COM PORCA E ANILHAS POR ARMAÇÃO (kg) Quadro F.5

Armações de MT	M12x35x20 +P(1) +AP(1)	+P(1) +AP(1) +P(1) +AP(1) +P(1) +AP(1) +P(1) +AP(1) +P(1) +AP(1) +P(1) +AP(1)									
	+AM(1)	+AM(1)	+AM(1)	+AM(1)	+AM(1)	+AM(1)					
TAN 60	-	-	-	-		2	0.10				
TAN 80	-	-	-	-	-	2	0.10				
TAN 120	-	-	-	-	-	2	0.10				
GAL	-	3	-	-	-	3	0.59				
GAL1	1	3	-	-	-	3	0.63				
BInf-GAL1	1	1	-	-	-	1	0.26				
GAN 80	-	-	-	-	-	3	0.15				
GAN 120	-	-	-	-	-	3	0.15				
GAN1 80	2	-	-	-	-	3	0.29				
GAN1 100	2	-	-	-	-	3	0.29				
GAN1 120	2	-	-	-	-	3	0.29				
BInf-GAN1 80	2	-	-	-	-	1	0.20				
BInf-GAN1 100	2	-	-	-	-	1	0.20				
BInf-GAN1 120	2	-	-	-	-	1	0.20				

				Conjunto de	parafusos co	m porca, anilh	na plana e anil	ha de pressão	ou de mola	Massa total dos		
Arr	nações d	e MT	•	M12x35x20 +P(1) +AP(1) +AM(1)		M16x40x25 +P(1) +AP(1) +AM(1)	M16x45x25 +P(1) +AP(1) +AM(1)	M16x50x25 +P(1) +AP(1) +AM(1)	M10x35 +P(1) +AP(1) +AM(1)	parafusos (kg)		
	BI 75			-	-	-	-	-	1	0.05		
	HAL-A2	S		-	-	-	2	-	1	0.35		
	HTP4			-	2	-	-	-	1	0.30		
	VAN			-	-	-	-	-	3	0.15		
	PAL PAN			-	-	-	-	-	2 2	0.10 0.10		
	Poste		Al/An	-			4		1	0.10		
	c/ seco				-	-		-				
	horizon		Ref	-	-	-	4	-	1	0.65		
80	Poste c/ ou s secc. vertica	/	FL	-	-	-	4	-	1	0.65		
HRFSC 80			1º Nível	-	-	-	2	-	1	0.35		
	A	2º	-	-	-	2	-	1	0.35			
	DRV	Face	Nível 1º Nível	-	-	-	2	-	1	0.35		
		В	2º Nível	-	-	-	2	-	1	0.35		
	Poste		Al/An	-	-	-	4	-	1	0.65		
	c/ seco		Ref	-	-	-	4	-	1	0.65		
O	Poste c/ ou s/secc vertica		FL	-	-	-	4	-	1	0.65		
HRFSC 100			1º Nível	-	-	-	2	-	1	0.35		
				Α	2º Nível	-	-	-	2	-	1	0.35
		Face		-	-	-	2	-	1	0.35		
	De -t	В	2º Nível	-	-	-	2	-	1	0.35		
	Poste c/ seco		Al/An	-	-	-	4	-	1	0.65		
	horizon		Ref	-	-	-	4	-	1	0.65		
HRFSC 120	Poste c/ ou s/secc vertica		FL	-	-	-	4	-	1	0.65		
主 ``			1º Nível	-	-	-	2	-	1	0.35		
	DRV	Α	2º Nível	-	-	-	2	-	1	0.35		
	Fi			-	-	-	2	-	1	0.35		

	~ d		Conjunto de	Conjunto de parafusos com porca, anilha plana e anilha de pressão ou de mola								
Arn	nações de I	wi i	M12x35x20 +P(1) +AP(1) +AM(1)	M16x35x25 +P(1) +AP(1) +AM(1)	M16x40x25 +P(1) +AP(1) +AM(1)	M16x45x25 +P(1) +AP(1) +AM(1)	M16x50x25 +P(1) +AP(1) +AM(1)	M10x35 +P(1) +AP(1) +AM(1)	parafusos (kg)			
		2º Nível	-	-	-	2	-	1	0.35			
HRFSC 80 c/ BI 75	Al/	An	-	-	-	4	-	2	0.69			
HR 80 BI	Ref	'FL	-	-	-	4	-	2	0.69			
:SC 'c/ 75	Al/	An	-	-	-	4	-	2	0.69			
HRFSC 100 c/ BI 75	Ref/FL		-	-	-	4	-	2	0.69			
HRFSC 120 c/ BI 75	Al/An		-	-	-	4	-	2	0.69			
HRFSC 120 c/ BI 75	Ref/FL		-	-	-	4	-	2	0.69			
	Al/	An	-	-	4	-	-	1	0.64			
HRFSC3 100	Ref,	'FL	-	-	4	-	-	1	0.64			
HRF 1	DRV	Face A	-	-	2	-	1	1	0.34			
	DRV	Face B	-	-	2	-	-	1	0.34			
HRFSC3 120	Al/An		-	-	-	-	4	1	0.68			
HRF 1.	Ref/FL		-	-	-	-	4	1	0.68			
) ()	უ Al/An		-	-	-	-	4	1	0.68			
HRFSC3 140	Ref/FL		-	-	-	-	4	1	0.68			

F.6 MASSA TOTAL (APROXIMADA) DOS ESTRIBOS COM PORCAS E ANILHAS POR ARMAÇÃO (kg) Quadro F.6

Armações de MT	Conjunto de e	stribos com por planas	cas e anilhas	Massa total do conjunto
Armações de IMT	QZ16-140-70	QZ16-190-70	QZ16-235-70	(aproximada) (kg)
TAN 60	5	-	-	3.4
TAN 80	5	-	-	3.4
TAN 120	5	-	ı	3.4
GAL	-	3	ı	2.5
GAL1	-	3	ı	2.5
BInf-GAL1	-	1	-	0.8
GAN 80	6	-	-	4.0
GAN 120	6	-	-	4.0

Arm	Armações de MT			Conjunto de e	stribos com por planas	cas e anilhas	Massa total do conjunto
	uçocs	uc IV		QZ16-140-70	QZ16-190-70	QZ16-235-70	(aproximada) (kg)
	GAN1	80		6	-	-	4.0
G	SAN1 1	.00		6	-	-	4.0
G	SAN1 1	20		6	-	-	4.0
Blr	nf-GAN	11 80		2	-	-	1.3
Bln	f-GAN1 100)	2	-	-	1.3
Bln	f-GAN1 120)	2	-	-	1.3
	BI 75			1	-	-	0.7
	HAL-A2S			-	-	3	3.1
	HTP4	1		3	-	-	2.0
	VAN			3	-	-	2.0
	PAL			-	-	3	3.1
	PAN			6	-	-	4.0
	Pos		Al/An	6	-	-	4.0
	c/ se		Ref	6	-	-	4.0
80	Pos c/ ou sec vert	u s/ :c.	FL	6	-	-	4.0
HRFSC 80		Face	1º Nível	3	-	-	2.0
	DRV-	Α	2º Nível	3	-	-	2.0
		Face	1º Nível	3	-	-	2.0
		В	2º Nível	3	-	-	2.0
	Pos		Al/An	6	-	-	4.0
	c/ se		Ref	6	-	-	4.0
U	c/ or sec	u s/ :c.	FL	6	-	-	4.0
HRFSC 100		Face	1º Nível	3	-	-	2.0
	D.C. (Α	2º Nível	3	-	-	2.0
	DRV	Face	1º Nível	3	-	-	2.0
		В	2º Nível	3	-	-	2.0
	Pos		Al/An	6	-	-	4.0
.sc	c/ se		Ref	6	-	-	4.0
HRF 12	Horizontal Poste c/ ou s/ secc.		FL	6	-	-	4.0

•	Armações de MT		Conjunto de e	stribos com por planas	cas e anilhas	Massa total do conjunto																									
Arma	açoes	ae iv	II T	QZ16-140-70	QZ16-190-70	QZ16-235-70	(aproximada) (kg)																								
	vert	ical																													
		1º Face Nível		3	-	-	2.0																								
	DRV	Α	2º Nível	3	-	-	2.0																								
		Face Nível		3	-	-	2.0																								
		B 2º Nível		3	-	-	2.0																								
HRFSC 80 c/ BI 75		Al/An		Al/An		Al/An		8	-	-	5.4																				
H 80		Ref/FL		8	-	-	5.4																								
SC c/ 75		Al/An		8	-	-	5.4																								
HRFSC 100 c/ BI 75		Ref/FL		8	-	-	5.4																								
SC 'c'/		Al/Aı	n	8	-	-	5.4																								
HRFSC 120 c/ BI 75		Ref/FL		Ref/FL		Ref/FL		Ref/FL		Ref/FL		Ref/FL		Ref/FL		8	-	-	5.4												
		Al/An		Al/An		Al/An		Al/An		Al/An		Al/An		Al/An		-	7	-	5.8												
HRFSC3 100		Ref/FL		Ref/FL		Ref/FL		Ref/FL		Ref/FL		Ref/FL		Ref/FL		Ref/FL		Ref/FL		Ref/FL		Ref/FL		Ref/FL		Ref/FL		-	7	-	5.8
HRI 1	DR	١V	Face A	-	3	-	2.5																								
	DR	DRV Face B		-	3	-	2.5																								
HRFSC3 120		Al/An		-	7	-	5.8																								
HRI 1	Ref/FL		L _	-	7	-	5.8																								
5C3	Al/An		n	-	7	-	5.8																								
HRFSC3 140	Ref/FL		Ref/FL		·L	-	7	-	5.8																						

F.7 MATERIAIS DOS COMPONENTES DAS ARMAÇÕES DE MT

Quadro F.7

Componentes das armações de MT	Materiais	Tolerâncias dimensionais e de forma (normas)
Perfil em U (UPN)	Aço S 275 JR de acordo com a norma NP EN 10025-2	NP EN 10279
Cantoneiras em L de abas iguais	Aço S 275 JR de acordo com a norma NP EN 10025-2	NP EN 10056-2

Compone armaçõe		Materiais	Tolerâncias dimensionais e de forma (normas)
Barra ret	tangular	Aço S 275 JR de acordo com a norma NP EN 10025-2	NP EN 10058
Chapas	CH3	Aço S 275 JR de acordo com a norma NP EN 10025-2	NP EN 10029
Peri	nos	Aço S 275 JR ^(*) de acordo com a norma NP EN 10025-2	- Dimensões: NP EN 10060; -Roscas de acordo com ISO 965-1
		Classe 8.8 ^(**) de acordo com norma ISO 898-1	-Dimensões: DIN 7990; NP EN ISO
Paraf	usos	Aço inoxidável: Classe A2 de acordo com a norma NP EN ISO 3506-1	4759-1; -Roscas: ISO 965-1
Por		Classe 8 ^(**) de acordo com norma ISO 898-2	-Dimensões: ISO 4032; NP EN ISO 4759-1;
FUI		Aço inoxidável: Classe A2 de acordo com a norma ISO 3506-2	-Roscas: ISO 965-1
Anilha	plana	Aço com dureza 200 HV (mínimo) de acordo com a norma NP EN ISO 7089	- NP EN ISO 7089; EN ISO 4759-3.
Anilha de p		Aço mola de acordo com a norma DIN 127	DIN 127
Estr	ibo	Aço S 275 JR ^(*) de acordo com a norma NP EN 10025-2	- Dimensões: NP EN 10060; -Roscas: ISO 965-1
Anilha q	uadrada	Aço S 275 JR de acordo com a norma NP EN 10025-2	NP EN 10058
Man	ıilha	Aço forjado de acordo com a norma EN ISO 683-1	-

^{*}A tensão limite elástica mínima dos pernos e estribos deve ser de 300 MPa.

^{**}São admitidos parafusos e porcas da classe 5.6 desde que devidamente justificado pelos fornecedores.

ANEXO G (INFORMATIVO)

QUADRO RESUMO DOS PERNOS A ASSOCIAR A CADA ARMAÇÃO DE MT

G.1 PERNOS A ASSOCIAR A CADA TIPO DE ARMAÇÃO (POSTES DE BETÃO DE MT: 400 daN-1600 daN) Quadro G.1

	_		Qu	adro G.1				
	a		Postes (código da cabo	eça e solicitaçã	ão nominal, <i>F</i>	em daN)	
Armações de MT	Quantidade	9	9	P01	9	70	P03	P04
		400	009	800	1000	1200	1400	1600
	4	P16-300(100) +P(4)+AP(4)						
TAN 60	4	P16-300(100) +P(2)+AP(2)						
	2	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)
	4	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)
TAN 80	4	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)
	2	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-500(100) +P(2)+AP(2)
	4	-	-	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)
TAN 120	4	-	-	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)
	2	-	-	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
GAL	6	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	-	-
CALL	2	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	-	-
GAL1	5	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	-	-
Dief CAL4	2	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	-	-
BInf-GAL1	1	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	-	-
CANAGO	9	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)
GAN 80	6	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
GAN: 122	9	-	-	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)
GAN 120	6	-	-	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
GAN1 80	6	P16-250(100)	P16-250(100)	P16-250(100)		P16-250(100)	P16-300(100)	P16-300(100)

distribuição

			Postes (d	código da cabo	eça e solicitaçã	ão nominal, <i>F</i>	em daN)	
Armações de MT	Quantidade	S	8	P01	S	20	P03	P04
		400	009	800	1000	1200	1400	1600
		+P(4)+AP(4)						
	5	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)
	4	P16-250(100) +P(2)+AP(2)	P16-250(100) +P(2)+AP(2)	P16-250(100) +P(2)+AP(2)	P16-250(100) +P(2)+AP(2)	P16-250(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)
	1	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
	6	-	-	P16-250(100) +P(4)+AP(4)	P16-250(100) +P(4)+AP(4)	P16-250(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)
GAN1 100	5	-	-	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)
GANT 100	4	-	-	P16-250(100) +P(2)+AP(2)	+P(2)+AP(2)	P16-250(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)
	1	-	-	P16-300(100) +P(2)+AP(2)	+P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
	6	-	-	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)
GAN1 120	5	-	-	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)
5 2 = 2 = 0	4	-	-	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)
	1	-	-	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
BInf-GAN1 80	5	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)
Dim GARTIO	1	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
BInf-GAN1 100	5	-	-	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)
BIIII-GAINT 100	1	-	-	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
Dief CANA 130	5	-	-	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)
BInf-GAN1 120	1	-	-	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
BI 75	2	-	-	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)
HAL-A2S	6	P16-300(100) +P(4)+AP(4)						
HTP4	2	-			-	-	-	-
	6	-	-	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)
VAN	1º furo	-	-	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
	6 go furo	-	-	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)

				o o		Postes (d	código da cabe	eça e solicitaçã	ão nominal, <i>F</i>	em daN)	
Arm	ações	de N	IT	Quantidade		8	P01	S	26	P03	P04
					400	009	800	1000	1200	1400	1600
				17º furo	-	-	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
	PAL	_		4	P16-250(100)	P16-250(100)	P16-250(100)	P16-250(100)	P16-250(100)	-	-
				6	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2) P16-300(100)	+P(2)+AP(2) P16-300(100)	+P(2)+AP(2) P16-300(100)	P16-300(100)	P16-300(100)
	PAN		-	0	-	-	+P(4)+AP(4) P16-300(100)	+P(4)+AP(4) P16-300(100)	+P(4)+AP(4) P16-300(100)	+P(4)+AP(4) P16-300(100)	+P(4)+AP(4) P16-300(100)
				4	-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)
			01/0	4	P16-300(100) +P(4)+AP(4)						
	Post	e c/	Al/An	2	P16-300(100) +P(2)+AP(2)						
	se horiz			4	-	-	-	P16-350(100)	P16-350(100)	P16-400(100)	P16-400(100)
			Ref	2	_	_	_	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)
0	Post	e c/					-	+P(2)+AP(2) P16-350(100)	+P(2)+AP(2) P16-350(100)	+P(2)+AP(2) P16-350(100)	+P(2)+AP(2) P16-350(100)
HRFSC 80	ou	s/	FL	4	-	-	-	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)
HRF	se ver			2	-	-	-	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
		Face	1º Nível	6	P16-350(100) +P(4)+AP(4)						
		Α	2º	6	P16-350(100)	P16-350(100)	P16-350(100)	P16-350(100)	P16-350(100)	P16-400(100)	P16-400(100)
	DRV		Nível 1º		+P(4)+AP(4) P16-300(100)	+P(4)+AP(4) P16-300(100)	+P(4)+AP(4) P16-300(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)
		Face B	Nível 2º	6	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-450(100)
			Nível	6	+P(4)+AP(4)						
			41/2	4	-	-	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)
	Post	e c/	Al/An	2	-	-	P16-300(100) +P(2)+AP(2)	P16-300(100)	P16-300(100)	P16-300(100)	P16-300(100)
	se horiz			4	-	-	+F(Z)+AP(Z) -	+P(2)+AP(2) P16-400(100)	+P(2)+AP(2) P16-400(100)	+P(2)+AP(2) P16-400(100)	+P(2)+AP(2) P16-400(100)
			Ref					+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)
); (Post	e c/		2	-	-	-	+P(2)+AP(2) P16-350(100)	+P(2)+AP(2) P16-350(100)	+P(2)+AP(2)	+P(2)+AP(2) P16-350(100)
HRFSC 100	ou	s/	FL	4	-	-	-	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)
	se ver		, =	2	-	-	-	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)
			1º Nívol	6	P16-350(100)						
	DRV	Face A	2º	6	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)
	אוט	Face	Nível 1º		+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-500(100)
		В	Nível	6	+P(4)+AP(4)						

				a		Postes (d	código da cabe	eça e solicitaçã	ão nominal, <i>F</i>	em daN)		
Arm	ações	de N	1T	Quantidade	C	8	P01	S	20	P03	P04	
					400	009	800	1000	1200	1400	1600	
			2º Nível	6	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-550(100) +P(4)+AP(4)	
			01/0 m	4	-	-	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	
		te c/	Al/An	2	-	-	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	
		cc. ontal	l I	4	-	-	-	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	
			Ref	2	-	-	-	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	
HRFSC 120		te c/ ı s/	FL	4	-	-	-	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	
HRI 17		cc. tical	FL	2	-	-	-	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	
		Face	1º Nível	6	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	
	DBV	DRV Face		2º Nível	6	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)
	DKV		1º Nível	6	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	
		В	2º Nível	6	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-550(100) +P(4)+AP(4)	
			-	4	P16-250(100) +P(4)+AP(4)	P16-250(100) +P(4)+AP(4)	P16-250(100) +P(4)+AP(4)	P16-250(100) +P(4)+AP(4)	P16-250(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	
75	Al,	/An	10°	2	P16-250(100) +P(2)+AP(2)	P16-250(100) +P(2)+AP(2)	P16-250(100) +P(2)+AP(2)	P16-250(100) +P(2)+AP(2)	P16-250(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	
HRFSC 80 c/ BI 75			11°	2	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	+P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	
RFSC 8			-	4	-	-	-	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	+P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	
主	Re	f/FL	10°	2	-	-	-	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	+P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	
			11°	2	-	-	-	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	+P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	
			-	4	-	-	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	+P(4)+AP(4)	P16-300(100) +P(4)+AP(4)	
81 75	Al,	/An	10°	2	-	-	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	
HRFSC 100 c/ BI 75			11°	2	-	-	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-300(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	
RFSC 1	-		-	4	-	-	-	P16-350(100) +P(4)+AP(4) P16-350(100)	P16-350(100) +P(4)+AP(4) P16-350(100)	P16-350(100) +P(4)+AP(4) P16-350(100)	P16-350(100) +P(4)+AP(4) P16-350(100)	
Ξ	Re	f/FL	10°	2	-	-	-	+P(2)+AP(2) P16-300(100)	+P(2)+AP(2) P16-300(100)	+P(2)+AP(2)	+P(2)+AP(2) P16-300(100)	
ТЖТ	Α.Ι	/An	11°	4	-	-	- P16-300(100)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2) P16-300(100)	
I	AI/	AII.	_	4	_	-	1, TO-200(TOO)	P16-300(100)	P16-300(100)	1, TO-200(TOO)	1. TO-200(TOO)	

			e .		Postes (código da cabe	eça e solicitaçã	ăo nominal, <i>F</i>	em daN)					
Arma	ações de N	1T	Quantidade	D00		P01		20	P03	P04				
				400	009	800	1000	1200	1400	1600				
						+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)				
		10°	2			P16-300(100)	P16-300(100)	P16-300(100)	P16-300(100)	P16-300(100)				
		10	2	-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)				
		11°	2			P16-300(100)	P16-300(100)	P16-300(100)	P16-400(100)	P16-400(100)				
		11	2	-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)				
			4				P16-350(100)	P16-350(100)	P16-350(100)	P16-350(100)				
		-	4	-	-	-	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)				
	ח-4/בו	100	2				P16-350(100)	P16-350(100)	P16-350(100)	P16-350(100)				
	Ref/FL	10°	2	-	-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)				
		11°	2				P16-300(100)	P16-300(100)	P16-300(100)	P16-300(100)				
		11	2	-	-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)				
			4			P16-300(100)	P16-300(100)	P16-300(100)	P16-300(100)	P16-300(100)				
	01/0	_	4	-	-	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)				
	AI/A	n	2			P16-300(100)	P16-300(100)	P16-300(100)	P16-300(100)	P16-300(100)				
				-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)				
			4			P16-300(100)	P16-300(100)	P16-300(100)	P16-400(100)	P16-400(100)				
	D (/	D of / E1		Dof/El		Ref/FL		-	-	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)
00	Ret/I		_			P16-300(100)	P16-300(100)	P16-300(100)	P16-400(100)	P16-400(100)				
HRFSC3 100			2	-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)				
-SC						P16-350(100)	P16-350(100)	P16-350(100)		P16-350(100)				
Ŧ	D.D. /		6	-	-	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)				
_	DRV	Face A	2			P16-400(100)	P16-400(100)	P16-400(100)	P16-400(100)	P16-400(100)				
			2	-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)				
			_			P16-400(100)	P16-400(100)	P16-400(100)	P16-400(100)	P16-400(100)				
			6	-	-	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)				
	DRV	Face B				P16-350(100)	P16-350(100)	P16-350(100)	P16-350(100)	P16-450(100)				
			2	-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)				
						P16-300(100)	P16-300(100)	P16-300(100)		P16-300(100)				
			4	-	-	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)				
20	Al/A	n	_			P16-300(100)	P16-300(100)	P16-300(100)		P16-300(100)				
3 1			2	-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)				
HRFSC3 120			4			P16-300(100)	P16-300(100)	P16-300(100)	P16-400(100)	P16-400(100)				
H. H.	D ('	_,	4	-	-	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)				
_	Ref/I	-L	_			P16-300(100)	P16-300(100)	P16-300(100)	P16-400(100)	P16-400(100)				
			2	-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)				
			_			P16-300(100)	P16-300(100)	P16-300(100)	P16-300(100)	P16-300(100)				
	A 1 / A	n	4	-	-	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)				
40	AI/A	rı İ				P16-300(100)	P16-300(100)	P16-300(100)	P16-300(100)	P16-300(100)				
HRFSC3 140			2	-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)				
FSC						P16-300(100)	P16-300(100)	P16-300(100)	P16-400(100)	P16-400(100)				
H R	D-£/1	_,	4			+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)				
	Ref/FL	2			P16-300(100)	P16-300(100)	P16-300(100)		P16-400(100)					
		2	-	-	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)					

G.2 PERNOS A ASSOCIAR A CADA TIPO DE ARMAÇÃO (POSTES DE BETÃO DE MT: 2250 daN-9000 daN) Quadro G.2

	<u>a</u>		Postes (códig	o da cabeça e	solicitação nom	ninal <i>, F</i> em daN)	
Armações de MT	Quantidade	M04	90W	M08	M10	G10 (=M10)	G12
		2250	2750	4000	5000	7500	0006
	4	P16-300(100) +P(4)+AP(4)	-	-	-	-	-
TAN 60	4	P16-300(100) +P(2)+AP(2)	-	-	-	-	-
	2	P16-400(100) +P(2)+AP(2)	-	-	-	-	-
	4	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	-	-
TAN 80	4	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-450(100) +P(2)+AP(2)	P16-450(100) +P(2)+AP(2)	-	-
	2	P16-500(100) +P(2)+AP(2)	P16-500(100) +P(2)+AP(2)	P16-550(100) +P(2)+AP(2)	P16-550(100) +P(2)+AP(2)	-	-
	4	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	-	-
TAN 120	4	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	-	-
	2	P16-500(100) +P(2)+AP(2)	P16-500(100) +P(2)+AP(2)	P16-500(100) +P(2)+AP(2)	P16-550(100) +P(2)+AP(2)	-	-
GAL	6	-	-	-	-	-	-
CALA	2	-	-	-	-	-	-
GAL1	5	-	-	-	-	-	-
Direct CALA	2	-	-	-	-	-	-
BInf-GAL1	1	-	-	-	-	-	-
GAN 80	9	P16-350(100) +P(4)+AP(4)	P16-350(100) +P(4)+AP(4)	-	-	-	-
GAN 80	6	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	-	1	-	-
GAN 120	9	P16-350(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	-
GAIN 12U	6	P16-350(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-450(100) +P(2)+AP(2)	P16-450(100) +P(2)+AP(2)	-
	6	P16-300(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	-	-	-
CAN1 90	5	P16-350(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	-	-	-
GAN1 80	4	P16-300(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	-	-	
	1	P16-350(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	-	-	-
	6	P16-300(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)		-	-
GAN1 100	5	P16-350(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	-	-	-
	4	P16-300(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	-	-	-
	1	P16-350(100)		P16-400(100)	_	_	-

			-	9 5		Postes (código	o da cabeça e	solicitação nom	ninal, F em daN)	
Ar	mações de MT			Quantidade	M04	M06	M08	M10	G10 (=M10)	G12
					2250	2750	4000	2000	7500	0006
					+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)			
			(5	P16-300(100)	P16-400(100)	P16-450(100)	P16-450(100)	P16-450(100)	_
					+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-350(100)	+P(4)+AP(4) P16-450(100)	+P(4)+AP(4)	+P(4)+AP(4) P16-450(100)	
	GAN1 120		į	5	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	+P(4)+AP(4)	-
					P16-300(100)	P16-450(100)	P16-450(100)	P16-450(100)	P16-450(100)	
			4	4	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	-
					P16-350(100)	P16-450(100)	P16-450(100)	P16-450(100)	P16-450(100)	
			1		+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	
			5		P16-350(100)	P16-400(100)	P16-400(100)			
	BInf-GAN1 80				+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	<u>-</u>	-	<u>-</u>
t	אס דאשם-ווווכ				P16-350(100)	P16-400(100)	P16-400(100)			
			•	1	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	-	-	
	BInf-GAN1 100		5		P16-350(100)	P16-400(100)	P16-400(100)	_	_	_
R			,	,	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)			
DIIII-GAN1 100			1	P16-350(100)	P16-400(100)	P16-400(100)	-	-	_	
		•	•	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)				
			ı	5	P16-350(100)	P16-350(100)	P16-450(100)	P16-450(100)	P16-450(100)	_
R	Inf-GAN1 120		,	,	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	
BIIII-GANT 120				1	P16-350(100)	P16-450(100)	P16-450(100)	P16-450(100)	P16-450(100)	_
				•	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	
	BI 75			2	P16-400(100)	P16-500(100)	P16-500(100)	P16-550(100)	P16-550(100)	_
					+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	
	HAL-A2S		(<u> </u>	P16-300(100)	P16-350(100)	-	-	-	-
					+P(4)+AP(4)	+P(4)+AP(4)				
	HTP4		2	2	P16-450(100) +P(2)+AP(2)	-	-	-	-	-
					P16-350(100)	P16-350(100)				
			(5	+P(2)+AP(2)	+P(2)+AP(2)	-	-	-	-
				1º	P16-450(100)	P16-450(100)				
				furo	+P(2)+AP(2)	+P(2)+AP(2)	-	-	-	-
	VAN		_	9º	P16-450(100)	P16-450(100)				
			6	furo	+P(2)+AP(2)	+P(2)+AP(2)	-	-	-	-
				17º	P16-450(100)	P16-450(100)				
				furo	+P(2)+AP(2)	+P(2)+AP(2)	-	-		
	PAL		4	1	-	-	-	-	-	-
				5	P16-300(100)	P16-400(100)	P16-400(100)	P16-400(100)		
	PAN				+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	-	
	FAN		4	4	P16-300(100)	P16-400(100)	P16-400(100)	P16-400(100)	-	_
	1				+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)		
			4	4	P16-300(100)	P16-400(100)	P16-400(100)	-	-	_
	Poste c/ secc. horizontal Ref			+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)				
80		2	2	P16-300(100)	P16-400(100)	P16-400(100)	-	-	-	
FSC					+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)			
Ä			Ref 2	Δ	P16-500(100) +P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	P16-550(100) +P(4)+AP(4)	-	-	-
		R△f								
		INCI			P16-500(100)	P16-500(100)	P16-550(100)		l	

				ě		Postes (códig	o da cabeça e	solicitação nom	ninal, F em daN)	
Ar	mações	de MT		Quantidade	M04	M06	M08	M10	G10 (=M10)	G12
				J	2250	2750	4000	2000	7500	0006
		c/ ou s/		4	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	-
		cc. tical	FL	2	P16-450(100) +P(2)+AP(2)	P16-450(100) +P(2)+AP(2)	P16-500(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2)	-
			1º Nível	6	P16-350(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	-
		Face A	2º Nível	6	P16-400(100) +P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	-
	DRV	F D	1º Nível	6	P16-500(100) +P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	-
		Face B	2º Nível	6	P16-450(100) +P(4)+AP(4)	P16-550(100) +P(4)+AP(4)	P16-550(100) +P(4)+AP(4)	P16-650(100) +P(4)+AP(4)	P16-650(100) +P(4)+AP(4)	
			Al/An	4	P16-300(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	-	-	-
	Poste c/ secc horizontal		All All	2	P16-300(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	-	-	-
		ontal	Ref	4	P16-500(100) +P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	P16-550(100) +P(4)+AP(4)	-	-	-
				2	P16-500(100) +P(2)+AP(2)	P16-500(100) +P(2)+AP(2)	P16-550(100) +P(2)+AP(2)	-	-	-
HRFSC 100		Poste c/ ou s, secc.		4	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	-
Ξ ,	ver	tical		2	P16-450(100) +P(2)+AP(2)	P16-450(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2)	-
		Face A	1º Nível	6	P16-350(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)		P16-500(100) +P(4)+AP(4)	-
	DRV		2º Nível	6	+P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	P16-500(100) +P(4)+AP(4)	-
		Face B	1º Nível 2º	6	P16-500(100) +P(4)+AP(4) P16-550(100)	P16-600(100) +P(4)+AP(4) P16-650(100)	P16-600(100) +P(4)+AP(4) P16-650(100)	P16-650(100) +P(4)+AP(4) P16-700(100)	P16-650(100) +P(4)+AP(4) P16-700(100)	-
			Nível	6	+P(4)+AP(4) P16-300(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4)	+P(4)+AP(4)	-
			Al/An	4	+P(4)+AP(4) P16-300(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)	-	-	-
		c/ secc. contal		4	+P(2)+AP(2) P16-500(100)	+P(2)+AP(2) P16-500(100)	+P(2)+AP(2) P16-550(100)	-	-	-
()	Poste c/ second vertice DRV		Ref	2	+P(4)+AP(4) P16-500(100)	+P(4)+AP(4) P16-500(100)	+P(4)+AP(4) P16-550(100)	-	_	
HRFSC 120		c/ ou s/		4	+P(2)+AP(2) P16-450(100)	+P(2)+AP(2) P16-450(100)	+P(2)+AP(2) P16-600(100)	P16-600(100)	P16-600(100)	
		cc.	FL	2	+P(4)+AP(4) P16-450(100)	+P(4)+AP(4) P16-450(100)	+P(4)+AP(4) P16-600(100)	+P(4)+AP(4) P16-600(100)	+P(4)+AP(4) P16-600(100)	
			1º	6	+P(2)+AP(2) P16-350(100)	+P(2)+AP(2) P16-450(100)	+P(2)+AP(2) P16-450(100)	+P(2)+AP(2) P16-500(100)	+P(2)+AP(2) P16-500(100)	_
		Face A	Nível 2º	6	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-500(100)	+P(4)+AP(4) P16-500(100)	+P(4)+AP(4) P16-500(100)	+P(4)+AP(4) P16-500(100)	

				<u>o</u>		Postes (códig	o da cabeça e	solicitação nom	ninal, <i>F</i> em daN)		
Arn	nações d	е МТ		Quantidade	M04	M06	M08	M10	G10 (=M10)	G12		
				J	2250	2750	4000	2000	7500	0006		
		Face	1º Nível	6	P16-500(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-650(100) +P(4)+AP(4)	P16-650(100) +P(4)+AP(4)	-		
		В	2º Nível	6	P16-550(100) +P(4)+AP(4)	P16-650(100) +P(4)+AP(4)	P16-650(100) +P(4)+AP(4)	P16-700(100) +P(4)+AP(4)	P16-700(100) +P(4)+AP(4)	-		
			-	4	P16-300(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	-	-	-		
75	AI/A	n	10°	2	P16-300(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	-	-	-		
) c/ Bl			11°	2	P16-400(100) +P(2)+AP(2)	P16-500(100) +P(2)+AP(2)	P16-500(100) +P(2)+AP(2)	-	-	-		
HRFSC 80 c/ BI 75					-	4	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	-
光	Ref/I	Ref/FL		2	P16-450(100) +P(2)+AP(2)	P16-450(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2)	-		
			11°	2	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	-		
	Al/An		-	4	P16-300(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	-	-	-		
175			10°	2	P16-300(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	-	-	-		
00 c/ B			11°	2	P16-400(100) +P(2)+AP(2)	P16-500(100) +P(2)+AP(2)	P16-500(100) +P(2)+AP(2)	-	-	-		
HRFSC 100 c/ BI 75			-	4	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	-		
H	Ref/I	EL.	10°	2	P16-450(100) +P(2)+AP(2)	P16-450(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2)	-		
			11°	2	P16-350(100) +P(2)+AP(2)	P16-350(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	-		
			-	4	P16-300(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	P16-400(100) +P(4)+AP(4)	-	-	-		
31 75	Al/A	n	10°	2	P16-300(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	P16-400(100) +P(2)+AP(2)	-	-	-		
20 c/ F			11°	2	P16-400(100) +P(2)+AP(2)	P16-500(100) +P(2)+AP(2)	P16-500(100) +P(2)+AP(2)	-	-	-		
HRFSC 120 c/ BI 75			-	4	P16-450(100) +P(4)+AP(4)	P16-450(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	P16-600(100) +P(4)+AP(4)	-		
포	Ref/I	EL.	10°	2	P16-450(100) +P(2)+AP(2) P16-350(100)	P16-450(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2)	P16-600(100) +P(2)+AP(2) P16-400(100)	P16-600(100) +P(2)+AP(2)	-		
			11°	2	+P(2)+AP(2) P16-300(100)	P16-350(100) +P(2)+AP(2) P16-400(100)	P16-400(100) +P(2)+AP(2) P16-400(100)	+P(2)+AP(2) P16-450(100)	P16-400(100) +P(2)+AP(2) P16-450(100)	- P16-450(100)		
	Al/An		-	4	+P(4)+AP(4) P16-300(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-450(100)	+P(4)+AP(4) P16-450(100)	+P(4)+AP(4) P16-450(100)		
HRFSC3 100				2	+P(2)+AP(2) P16-400(100)	+P(2)+AP(2) P16-500(100)	+P(2)+AP(2) P16-550(100)	+P(2)+AP(2) P16-650(100)	+P(2)+AP(2) P16-650(100)	+P(2)+AP(2) P16-650(100)		
HRFS	R	ef/FL	-	4	+P(4)+AP(4) P16-400(100)	+P(4)+AP(4) P16-500(100)	+P(4)+AP(4) P16-550(100)	+P(4)+AP(4) P16-650(100)	+P(4)+AP(4) P16-650(100)	+P(4)+AP(4) P16-650(100)		
	DRV Face A		6	+P(2)+AP(2) P16-350(100)	+P(2)+AP(2) P16-450(100)	+P(2)+AP(2) P16-450(100)	+P(2)+AP(2) P16-450(100)	+P(2)+AP(2) P16-450(100)	+P(2)+AP(2) P16-500(100)			

			<u>e</u>		Postes (código	o da cabeça e	solicitação nom	inal, <i>F</i> em daN)	
Arr	nações de MT	-	Quantidade	M04	M06	M08	M10	G10 (=M10)	G12
			b	2250	2750	4000	2000	7500	0006
				+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)
			2	P16-400(100)	P16-600(100)	P16-600(100)	P16-600(100)	P16-600(100)	P16-650(100)
			2	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)
			6	P16-500(100)	P16-500(100)	P16-600(100)	P16-600(100)	P16-600(100)	P16-700(100)
	DRV	Face B		+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)
	DIV	l ace b	2	P16-450(100)	P16-550(100)	P16-550(100)	P16-650(100)	P16-650(100)	P16-650(100)
				+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)
			4	P16-300(100)	P16-400(100)	P16-400(100)	P16-450(100)	P16-450(100)	P16-450(100)
	Al/An		7	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)
HRFSC3 120	Al/All		2	P16-300(100)	P16-400(100)	P16-400(100)	P16-450(100)	P16-450(100)	P16-450(100)
8				+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)
FS(4	P16-400(100)	P16-500(100)	P16-550(100)	P16-650(100)	P16-650(100)	P16-650(100)
H.	Ref/FL		7	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)
	Kei/TL	•	2	P16-400(100)	P16-500(100)	P16-550(100)	P16-650(100)	P16-650(100)	P16-650(100)
			2	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)
				P16-300(100)	P16-400(100)	P16-400(100)	P16-450(100)	P16-450(100)	P16-450(100)
_	Al/An		4	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)
140	AIJAII		2	P16-300(100)	P16-400(100)	P16-400(100)	P16-450(100)	P16-450(100)	P16-450(100)
HRFSC3 140			۷	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)
FSC			4	P16-400(100)	P16-450(100)	P16-600(100)	P16-600(100)	P16-600(100)	P16-650(100)
壬	Ref/FL		7	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)	+P(4)+AP(4)
	Nei/FL	•	2	P16-400(100)	P16-450(100)	P16-600(100)	P16-600(100)	P16-600(100)	P16-650(100)
			2	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)	+P(2)+AP(2)

ANEXO H (INFORMATIVO)

DESIGNAÇÕES ANTERIORES E NOVAS DESIGNAÇÕES DAS PEÇAS DESENHADAS E RELAÇÃO DOS FICHEIROS CAD DAS ARMAÇÕES DE MT

Quadro H.1

. ~	Designação anterior	Nova designação	
Armação de MT	da peça desenhada	da peça desenhada	Ficheiros CAD
TAL ^(*)	C66-005-2005		ELIMINADA
		C67-5-0018-01	
TANKO	666 003 3005	C67-5-0018-02	TANI CO CC7 F 0040 days
TAN 60	C66-003-2005	C67-5-0018-03	TAN_60-C67-5-0018.dwg
		C67-5-0018-04	
		C67-5-0019-01	
TAN 80		C67-5-0019-02	TAN_80-C67-5-0019.dwg
TAN 80	-	C67-5-0019-03	TAN_80-C07-3-0013.dwg
		C67-5-0019-04	
		C67-5-0020-01	
TAN 120	C66-003-2005	C67-5-0020-02	TAN_120-C67-5-0020.dwg
TAN 120	C00-003-2003	C67-5-0020-03	TAN_120-C67-3-0020.dwg
		C67-5-0020-04	
		C67-5-0021-01	
GAL	C66-006-2005	C67-5-0021-02	GAL-C67-5-0021.dwg
		C67-5-0021-03	
	000 040 2044	C67-5-0022-01	
GAL1 ^(**)	C66-049-2014	C67-5-0022-02	CALA CC7 F 0022 dura
GALI ^()	C66-049A-2014 (braço	C67-5-0022-03	GAL1-C67-5-0022.dwg
	inferior)	C67-5-0022-04	
	CCC 0404 2044 /I	C67-5-0023-01	
BInf-GAL1	C66-049A-2014 (braço inferior)	C67-5-0023-02	BInf-GAL1-C67-5-0023.dwg
	illierior)	C67-5-0023-03	
		C67-5-0024-01	
GAN 80		C67-5-0024-02	GAN_80-C67-5-0024.dwg
	CCC 004 200F	C67-5-0024-03	
	C66-004-2005	C67-5-0025-01	
GAN 120		C67-5-0025-02	GAN_120-C67-5-0025.dwg
		C67-5-0025-03	
		C67-5-0026-01	
GAN1 80 ^(**)		C67-5-0026-02	CAN1 90 C67 F 0026 due
GAN1 80		C67-5-0026-03	GAN1_80-C67-5-0026.dwg
		C67-5-0026-04	
	000 000 2044	C67-5-0027-01	
GAN1 100 ^(**)	C66-050-2014	C67-5-0027-02	CAN1 100 CC7 5 0037 days
GANT 100'	C66-050A-2014 (braço inferior)	C67-5-0027-03	GAN1_100-C67-5-0027.dwg
	illienor)	C67-5-0027-04	
		C67-5-0028-01	
GAN1 120 ^(**)		C67-5-0028-02	CAN1 120 C67 F 0029 do-
GANT 120'		C67-5-0028-03	GAN1_120-C67-5-0028.dwg
		C67-5-0028-04	
BInf-GAN1 80		C67-5-0029-01	BInf-GAN1_80-C67-5-0029.dwg

Armação de MT	Designação anterior	Nova designação	Ficheiros CAD		
,aşao ao	da peça desenhada	da peça desenhada			
		C67-5-0029-02			
		C67-5-0029-03			
		C67-5-0030-01			
BInf-GAN1 100	C66-050A-2014 (braço	C67-5-0030-02	BInf-GAN1_100-C67-5-0030.dwg		
	inferior)	C67-5-0030-03			
		C67-5-0031-01			
BInf-GAN1 120		C67-5-0031-02	BInf-GAN1_120-C67-5-0031.dwg		
		C67-5-0031-03			
		C67-5-0063-01			
BI 75 ^(**)	C66-044A-2009	C67-5-0063-02	BI_75-C67-5-0063.dwg		
		C67-5-0063-03			
		C67-5-0032-01			
HAL-A2S ^(**)	C66-045A-2014	C67-5-0032-02	HAL-A2S-C67-5-0032.dwg		
TIAL A23	C66-045A-2016	C67-5-0032-03	11AL A23 CO7 3 0032.dwg		
		C67-5-0032-04			
	C66-001-2005	C67-5-0033-01			
HTP4	C66-001-2006	C67-5-0033-02	HTP4-C67-5-0033.dwg		
	C00-001-2000	C67-5-0033-03			
VAL ^(*)	C66-026-2005	E	ELIMINADA		
		C67-5-0034-01			
VAN	CCC 007 200F	C67-5-0034-02	VAN CC7 F 0034 dui-		
VAN	C66-007-2005	C67-5-0034-03	VAN-C67-5-0034.dwg		
		C67-5-0034-04			
		C67-5-0035-01			
PAL	C66-009-2005	C67-5-0035-02	PAL-C67-5-0035.dwg		
		C67-5-0035-03			
		C67-5-0036-01			
PAN	C66-008-2005	C67-5-0036-02	PAN-C67-5-0036.dwg		
		C67-5-0036-03			
		Ali/Ang com seccionador			
		horizontal			
		C67-5-0037-01	HRFSC_80-C67-5-0037.dwg		
		C67-5-0037-02			
		C67-5-0037-03			
		Reforço com seccionador			
		horizontal			
		C67-5-0038-01	HRFSC_80-C67-5-0038.dwg		
	C66-002A-2005(C67-5-0038-02			
HRFSC 80	Seccionamento-	C67-5-0038-03			
	Reforço-Fim de linha)	Fim de linha com ou sem			
	C66-002B-2005	seccionador vertical			
	(derivação)	C67-5-0039-01	HRFSC_80-C67-5-0039.dwg		
		C67-5-0039-02			
		C67-5-0039-03			
		Derivação			
		C67-5-0040-01	HRFSC_80-C67-5-0040.dwg		
		C67-5-0040-02			
	_	C67-5-0040-03			
HRFSC 100		Ali/Ang com seccionador	HRFSC_100-C67-5-0041.dwg		
		horizontal	_		

Armação de MT	Designação anterior da peça desenhada	Nova designação da peça desenhada	Ficheiros CAD
		C67-5-0041-01	
		C67-5-0041-02	
		C67-5-0041-03	
		Reforço com seccionador	
		horizontal	UD500 400 057 5 0040 I
		C67-5-0042-01	HRFSC_100-C67-5-0042.dwg
		C67-5-0042-02	
		C67-5-0042-03	
		Fim de linha com ou sem	
		seccionador vertical C67-5-0043-01	UDESC 100 C67 E 0042 due
		C67-5-0043-01	HRFSC_100-C67-5-0043.dwg
		C67-5-0043-02	
		Derivação	
		C67-5-0044-01	HRFSC_100-C67-5-0044.dwg
		C67-5-0044-02 C67-5-0044-03	
	-		
		Ali/Ang com seccionador	
		horizontal C67-5-0045-01	UDESC 120 CG7 E 004E due
		C67-5-0045-01	HRFSC_120-C67-5-0045.dwg
		C67-5-0045-03	
		Reforço com seccionador horizontal	
		C67-5-0046-01	HRFSC_120-C67-5-0046.dwg
		C67-5-0046-02	HKF3C_120-C07-3-0040.uwg
HRFSC 120		C67-5-0046-03	
11KI 3C 120		Fim de linha com ou sem	
		seccionador vertical	
		C67-5-0047-01	HRFSC_120-C67-5-0047.dwg
		C67-5-0047-02	<u></u>
		C67-5-0047-03	
		Derivação	
		C67-5-0048-01	
		C67-5-0048-02	HRFSC_120-C67-5-0048.dwg
		C67-5-0048-03	
		Ali/Ang	
		C67-5-0049-01	
		C67-5-0049-02	HRFSC_80-BI75-C67-5-0049.dwg
(44)		C67-5-0049-03	
HRFSC 80 com BI 75 ^(**)		Reforço/Fim de linha	
		C67-5-0050-01	
		C67-5-0050-02	HRFSC_80-BI75-C67-5-0050.dwg
	C66-044-2007	C67-5-0050-03	
	1	Ali/Ang	
		C67-5-0051-01	
		C67-5-0051-02	HRFSC_100-BI75-C67-5-0051.dwg
HRFSC 100 com BI 75 ^(**)		C67-5-0051-03	
		Reforço/Fim de linha	
			HRFSC_100-BI75-C67-5-0052.dwg

Armação de MT	Designação anterior da peça desenhada	Nova designação da peça desenhada	Ficheiros CAD
		C67-5-0052-02	
		C67-5-0052-03	
HRFSC 120 com BI 75 ^(**)		Ali/Ang C67-5-0053-01 C67-5-0053-02 C67-5-0053-03	HRFSC_120-BI75-C67-5-0053.dw
		Reforço/Fim de linha C67-5-0054-01 C67-5-0054-02 C67-5-0054-03	HRFSC_120-BI75-C67-5-0054.dw
HRFSC3 100 ^(**)	C66-046A-2014 C66-046B-2014 C66-046C-2014	Ali/Ang C67-5-0055-01 C67-5-0055-02 C67-5-0055-03	HRFSC3_100-C67-5-0055.dwg
		Reforço/Fim de linha C67-5-0056-01 C67-5-0056-02 C67-5-0056-03	HRFSC3_100-C67-5-0056.dwg
		Derivação- Face A C67-5-0057-01 C67-5-0057-02 C67-5-0057-03	HRFSC3_100-C67-5-0057.dwg
		Derivação- Face B C67-5-0058-01 C67-5-0058-02 C67-5-0058-03	HRFSC3_100-C67-5-0058.dwg
HRFSC3 120 ^(**)		Ali/Ang C67-5-0059-01 C67-5-0059-02 C67-5-0059-03	HRFSC3_120-C67-5-0059.dwg
		Reforço/Fim de linha C67-5-0060-01 C67-5-0060-02 C67-5-0060-03	HRFSC3_120-C67-5-0060.dwg
HRFSC3 140 ^(**)		Ali/Ang C67-5-0061-01 C67-5-0061-02 C67-5-0061-03	HRFSC3_140-C67-5-0061.dwg
		Reforço/Fim de linha C67-5-0062-01 C67-5-0062-02 C67-5-0062-03	HRFSC3_140-C67-5-0062.dwg

^{*}Armações eliminadas na revisão do documento normativo DMA-C65-620.

^{*}Armações introduzidas na nova versão do documento normativo DMA-C65-620.