

Requisitos para a realização de Estudos de Simulação em centros electroprodutores para demonstração de conformidade com o RfG

Controlo do Documento

Tipo de Documento:	Público
Divulgação:	Exterior à E-REDES

Histórico de alterações

Versão:	Data:	Descrição das alterações:	
V1.0	24/05/2021	Versão inicial	
V1.1	xx/xx/2023	Versão incremental	

Índice

1. Introdução	4
2. Requisitos formais	4
3. Pressupostos	4
4. Dados de entrada	4
5. Requisitos do RfG a validar	5
5.1 Capacidade de suportar cavas de tensão	5
5.2 Injeção de corrente reativa na RESP em situação de defeito	6
5.3 Capacidade de injeção de potência reativa no ponto de interligação	7
6. Multiplicidade de equipamentos	
7. Apresentação dos resultados de cada uma das simulações	9
8. Softwares de Simulação	10
9. Conclusões	10
10. Critérios de aceitação da conformidade	10
11. Confidencialidade	10

1. Introdução

O Regulamento Europeu 2016/631 de 14 de abril (RfG¹) estabelece vários requisitos de cumprimento obrigatório para produtores. Estes requisitos são definidos para o ponto de fronteira entre a RESP e o centro electroprodutor pelo que este tem de cumprir, como um todo, os requisitos e não nos seus componentes individuais. Os requisitos variam de acordo com o nível de significância do centro electroprodutor, conforme definidos pelo RfG, portaria nº73/2020 e pelo Despacho DGEG nº 7/2018.

Existe um número elevado de requisitos do RfG relacionados com a frequência, ou variações de frequência. Dado que a frequência no ponto de fronteira é idêntica à frequência dentro da central (não é afetada pelos transformadores e cabos entre o ponto de interligação e os geradores) é possível aceitar certificados de geradores, ou inversores, emitidos por certificadores autorizados conforme previsto nos artigos 30.º, 31.º, 32.º e 35.º do RfG.

Contudo, existem requisitos cujo cumprimento no equipamento gerador não se traduz diretamente no seu cumprimento no ponto de interligação devido à influência dos transformadores, cabos e outros equipamentos que existem entre os geradores e este ponto. Por este motivo, o RfG prevê no artigo 43.º a possibilidade de demonstração da conformidade de alguns requisitos serem realizados através da realização de estudos de simulação numérica. Segundo o número 2 do artigo 43.º do RfG cabe ao operador de rede competente² identificar os requisitos cuja conformidade pode ser aferida através da realização de simulações numéricas.

O presente documento estabelece as regras e requisitos para a realização de simulações numéricas com vista à prova da conformidade de alguns requisitos do RfG na altura de ligação do centro electroprodutor.

Caso se constate, em operação normal, que o comportamento do centro electroprodutor a incidentes na rede não é compatível com os requisitos do RfG este poderá ser desligado, nos termos da legislação vigente, independentemente dos resultados do estudo de simulação numérica realizado aquando da ligação.

2. Requisitos formais

O estudo de simulação deve cumprir os seguintes requisitos formais:

- 1) Ser escrito em língua portuguesa
- 2) Identificação da entidade emissora do estudo
- 3) Identificação dos autores
- 4) Contacto dos autores (email)
- 5) Identificação dos responsáveis pela aprovação e validação do estudo
- 6) Data da realização
- 7) Utilização de termos técnicos corretos

Caso o estudo de simulação seja realizado noutra língua e traduzido para português o ORD apenas terá em conta a versão portuguesa, com todos os eventuais erros e omissões que possam ter sido causados pela tradução.

3. Pressupostos

Na realização de um estudo de simulação é, muitas vezes, necessário assumir alguns pressupostos para o realizar. Todos os pressupostos assumidos durante o estudo devem estar claramente identificados, bem como uma pequena explicação sobre a sua motivação e eventuais valores selecionados.

4. Dados de entrada

Os dados que são utilizados no estudo devem estar claramente identificados no corpo do estudo ou nos seus anexos, nomeadamente:

- 1) Esquema unifilar da instalação
- 2) Potência de curto-circuito máxima
- 3) Potência de curto-circuito mínima
- 4) Potência base utilizada no estudo, que deverá ser igual à potência de ligação

¹ RfG – Requirements for Generators

² "operador de rede competente" - o operador de rede de transporte ou o operador de rede de distribuição a cuja rede está ou será ligado um módulo gerador

- 5) Modelos de simulação dos geradores/inversores utilizados
- 6) Parâmetros individualizados do modelo de gerador/inversor utilizados por cada um dos geradores/inversores existentes no centro electroprodutor
- Relatório de ensaios de que resulta o Certificado do gerador/inversor com a indicação das cavas de tensão suportadas por este em caso de inexistência de modelos assimétricos da central
- 8) Modelos de simulação dos sistemas de Armazenamento utilizados, caso existam
- Parâmetros individualizados do modelo do sistema de armazenamento utilizados por cada um dos geradores/inversores existentes no centro electroprodutor
- 10) Relatório de ensaios de que resulta o certificado do sistema de armazenamento com a indicação das cavas de tensão suportadas por este em caso de inexistência de modelos assimétricos do sistema de armazenamento
- 11) Modelos dos controladores agregadores existentes (ex.: controlo da potência reativa no ponto de interligação)
- 12) Parâmetros individualizados do modelo de cada controlador agregado existente
- 13) Potência reativa gerada pelas capacidades da rede interna do parque, à tensão nominal
- 14) Parâmetros de todos os transformadores do centro electroprodutor (exceto os transformadores de serviços auxiliares)
 - a. Potência nominal
 - b. Índice horário (ex.: YD11)
 - c. Tensão nominal primária
 - d. Tensão nominal secundária
 - e. Tensão de curto-circuito

Para transformadores com três enrolamentos será adicionalmente necessário indicar:

- f. Potência nominal Primário -> Secundário
- g. Potência nominal Primário -> Terciário
- h. Tensão de curto-circuito Primário -> Secundário
- i. Tensão de curto-circuito Primário -> Terciário
- j. Tensão de curto-circuito Secundário -> Terciário
- 15) Modelo e parâmetros dos controladores de tomadas de todos os transformadores que possuam regulação de tensão em carga da instalação.
- 16) Caso a falha dos serviços auxiliares tenha impacto direto na geração e estes possuam funções de proteção de tensão estas devem ser indicadas no estudo bem como a informação do seu impacto perante as situações especificadas em 5.1, 5.2 e 5.3.

5. Requisitos do RfG a validar

Os requisitos a validar serão os seguintes os apresentados em 5.1, 5.2 e 5.3. É possível que outros requisitos de conformidade com o RfG e Portaria nº 73/2020 possam ser validados através de simulação no caso de inexistência de certificados de conformidade, caso exista acordo entre o promotor e o ORD.

5.1 Capacidade de suportar cavas de tensão

O centro electroprodutor deve demonstrar a capacidade de suportar cavas de tensão sem se desligar da rede de acordo com:

- Número 5 do Anexo à portaria n.º 73/2020 caso seja um módulo gerador síncrono (MGS) ou um módulo parque gerador (MPG) do tipo C
- Número 9 do Anexo à portaria n.º 73/2020 caso seja um módulo gerador síncrono ou um módulo parque gerador dos D

Para tal o estudo de simulação deve demonstrar que todos os geradores/inversores do centro electroprodutor se mantêm ligados à RESP, através da rede privada, nas seguintes situações:

- 1) Devem ser realizadas análises nas seguintes condições:
 - a. Potência de curto-circuito máxima
 - b. Potência de curto-circuito mínima

- 2) Devem ser realizadas análise nas seguintes condições:
 - a. Potência ativa de injeção na RESP no valor máximo
 - b. Potência ativa de injeção na RESP a 1/3 do seu valor máximo
- 3) Deve ser simulada a existência de defeitos na rede de serviço pública a montante do ponto de interligação
- As perturbações são caracterizadas por uma tensão remanescente (Vr), em situação estacionária, no ponto de interligação e por uma duração (Δt)
- 5) No mínimo, a simulação deve demonstrar a conformidade do centro electroprodutor para os pontos de tensão remanescente e duração indicados na Tabela 1.

Tabela 1 – Pontos de tensão remanescente e duração a considerar na realização do estudo de simulação

	MGS (tipo C)	MPG (tipo C)		MGS (tipo D)		MPG (tipo D)	
	Vr(pu)	Δt (s)	Vr(pu)	Δt (s)	Vr(pu)	Δt (s)	Vr(pu)	Δt (s)
Ponto 1	0,05	0,15	0,05	0,25	0,05	0,15	0,05	0,25
Ponto 2	0,70	0,70	0,25	0,60	0,70	0,70	0,25	0,60
Ponto 3	0,85	1,50	0,49	1,00	0,85	1,50	0,49	1,00
Ponto 4	-	ı	0,85	1,60	-	-	0,85	1,60

- 6) Os pontos anteriores devem ser testados através de um programa de simulação dinâmica/estabilidade transitória para os seguintes tipos de defeito:
 - a. Trifásico
 - b. Fase-Fase-Terra entre a fase A e B neste caso considerar a tensão remanescente em VAB
 - c. Fase-Fase entre a fase A e B neste caso considerar a tensão remanescente em VAB
 - d. Fase-Terra na fase A neste caso considerar a tensão remanescente em VA
- 7) Presentemente, têm chegado ao ORD informações sobre a dificuldade em obter modelos dos geradores que permitam a sua simulação para o caso de defeitos assimétricos. Contudo, também existe a informação que a maioria dos fabricantes de geradores já está em processo de desenvolvimento dos modelos de comportamento assimétrico pelo que se espera que esta dificuldade seja ultrapassada no futuro. Assim, e de forma transitória, caso o modelo do gerador não suporte a simulação de defeitos assimétricos admite-se a utilização de um programa de simulação de defeitos em regime estacionário, para a simulação dos defeitos assimétricos previstos em 6). Deve-se:
 - a. impor um defeito de forma que a tensão remanescente no ponto de interligação seja a requerida;
 - identificar a menor tensão composta observada por cada gerador ou conjunto de geradores ou sistemas de armazenamento;
 - c. confirmar no certificado do inversor que este suporta as condições de defeito durante o tempo indicado.

Este procedimento deve ser repetido para todas as entradas aplicáveis da Tabela 1. No caso de existência de mais de 5 geradores/inversores e sistemas de armazenamento consultar o capítulo 6.

5.2 Injeção de corrente reativa na RESP em situação de defeito

O centro electroprodutor do tipo C e D constituído por MPG deve demonstrar a capacidade de injetar corrente reativa na RESP em defeito nas condições indicadas no número 15 do Anexo à portaria n.º 73/2020.

Para tal, a simulação a realizar deve, no mínimo demonstrar, que:

- O valor de corrente adicional previsto no número 15.5 do Anexo à portaria n.º 73/2020, para cada um dos tipos de defeito indicados em 5.1, é atingido
 - a. A análise deve necessariamente incluir os tipos de defeito indicados em 5.1 6) a.
 - b. Caso os modelos de simulação suportem a simulação de defeitos assimétricos também deverão ser analisados os defeitos constantes de 5.1 6) b., c. e d. (apenas aplicável se a ligação do neutro do transformador à terra no ponto de interligação existir, diretamente ou através de uma impedância)
 - c. A análise só deve incluir os tipos de defeito indicados em 5.1 6) d. caso o neutro do centro electroprodutor esteja ligado à terra no nível de tensão da RESP, diretamente ou através de uma impedância limitadora.

6-REDES

Requisitos para a realização de Estudos de Simulação para demonstração de conformidade com o RfG

- 2) A injeção de corrente adicional se inicia, no máximo, até 20ms depois da ocorrência da cava de tensão (alínea e) i) do número 15.6 do Anexo à portaria n.º 73/2020)
- 3) Após o início da injeção o valor da corrente adicional atinge os 90% do valor final no tempo máximo de 30ms (alínea e) ii) do número 15.6 do Anexo à portaria n.º 73/2020)
- 4) Após o início da injeção o valor da corrente adicional atinge o seu valor final no tempo máximo de 60ms (alínea e) iii) do número 15.6 do Anexo à portaria n.º 73/2020)
- 5) Caso sejam utilizados inversores e estes permitam a utilização de um valor diferente para a entrada em funcionamento do modo de injeção de corrente reativa, o valor de entrada deverá ser de 0.85pu, em alinhamento com o RfG e a portaria n.º 73/2020 e o valor de saída deste módulo deverá ser de 0.9pu, em alinhamento com os valores de qualidade de serviço

Esta análise pode ser realizada em simultâneo com a indicada em 5.1.

Nota: É expectável que a alínea 1) b. passe a ser de cumprimento obrigatório no futuro.

5.3 Capacidade de injeção de potência reativa no ponto de interligação

O centro electroprodutor deve se capaz de fornecer, ou absorver, potência reativa da rede nas condições de:

- MGS dos tipos C e D número 12 do Anexo à portaria n.º 73/2020
- MPG dos tipos C e D número 18 e 19 do Anexo à portaria n.º 73/2020

Para demonstrar a conformidade com os pontos da lista anterior a simulação deve ser realizada nas seguintes condições:

- 1) Devem ser realizadas análises nas seguintes condições:
 - a. Potência de curto-circuito máxima
- 2) Deve-se tentar colocar a tensão, na interligação, e a injeção/absorção de potência reativa nos pontos definidos na Tabela 2, ou pontos que os englobem, alterando o valor a tensão no equivalente de rede. Caso, nalgum desses pontos, não seja possível devido à potência de curto-circuito ser demasiado elevada deve-se deixar a tensão no equivalente da rede a montante no seu valor extremo e indicar esse facto no relatório, bem como a tensão resultante na interligação.

Tabela 2 – Pontos de tensão e potência reativa para demonstração da conformidade da injeção de potência reativa

Ponto	MGS (tipo C e D) MPG (tipo C e D)			
	V(pu)	Q/P _{max} (pu)		
1	1,100	-0,33		
2	1,000	-0,33		
3	0,95	-0,33		
4	0,938	-0,15		
5	0,928	0,00		
6	0,914	0,2		
7	0,900	0,41		
8	1,000	0,41		
9	1,050	0,41		
10	1,064	0,20		
11	1,078	0,00		
12	1,088	-0,33		

3) Para cada um dos pontos definidos na Tabela 2 devem-se apresentar as variáveis elétricas, definidas no capítulo 7, no ponto de interligação. No caso de existência de mais de 5 destes elementos deve-se consultar o capítulo 6.

4) Adicionalmente, para MPG do tipo C e D é necessária a demonstração da conformidade com o definido no número 19 do Anexo da portaria n.º 73/2020. A demonstração deve ser realizada colocando a potência ativa e reativa no ponto de interligação nos pontos da Tabela 3 ou, caso se trate de geradores eólicos, Tabela 4. Se for verificada a existência de limitação de potência aparente (Potência ativa máxima igual à potência aparente) aceitar-se-á a demonstração dos resultados de acordo com a curva representada na Figura 1 - Perfil de capacidade de fornecimento de potência reativa com a potência com limitação de potência aparente dada pela Equação 1. Caso a simulação seja realizada em pontos que englobem os definidos na Tabela 3 e Tabela 4 considerar-se-á que cumprem o requisito. A conformidade é avaliada verificando se as grandezas elétricas previstas no capítulo 7 nos terminais dos geradores/inversores ou sistemas de armazenamento se mantêm dentro dos valores suportáveis. No caso de existência de mais de 5 destes elementos deve-se consultar o capítulo 6.

Tabela 3 – Pontos para simulação da característica potência ativa vs. potência reativa para a Variante 1 definida no número 19 do Anexo da portaria n.º 73/2020

	MPG (tipo C e D)		
Ponto	P/P _{max}	Q/P _{max}	
1	1,00	-0,33	
2	0,75	-0,33	
3	0,50	-0,33	
4	0,25	-0,33	
5	0,00	-0,33	
6	0,00	-0,15	
7	0,00	0,20	
8	0,00	0,41	
9	0,25	0,41	
10	0,50	0,41	
11	0,75	0,41	
12	1,00	0,41	
13	1,00	0,20	
14	1,00	0,00	
15	1,00	-0,15	

Tabela 4 – Pontos para simulação da característica potência ativa vs. potência reativa para a Variante 2 (centrais de geração eólica) definida no número 19 do Anexo da portaria n.º 73/2020

	MPG (tipo C e D)		
Ponto	P/P _{max}	Q/P _{max}	
1	1,00	-0,33	
2	0,75	-0,33	
3	0,50	-0,33	
4	0,20	-0,33	
5	0,10	-0,15	
6	0,10	0,20	
7	0,20	0,41	
8	0,50	0,41	
9	0,75	0,41	
10	1,00	0,41	
11	1,00	0,20	
12	1,00	-0,15	

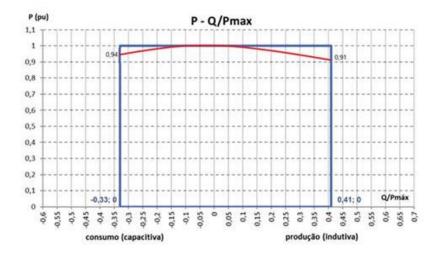


Figura 1 - Perfil de capacidade de fornecimento de potência reativa com a potência com limitação de potência aparente

Equação 1 – Limitação para o caso em que
$$S = P_{max}$$

$$P = \sqrt{1 - (Q/P_{max})^2}$$

6. Multiplicidade de equipamentos

Alguns centros electroprodutores podem ser constituídos por um elevado número de geradores/inversores, sistemas de armazenamento e de elementos de injeção de potência reativa. Nestas situações, não é necessária a apresentação das grandezas elétricas em todos os equipamentos para demonstração de conformidade. É, no entanto, necessária a apresentação das grandezas nos seguintes pontos:

- Inversor/gerador, equipamento injetor, e sistema de armazenamento (consoante o tipo de análise), por cada tipo de tecnologia de injeção empregue, eletricamente mais próximo³ do ponto de interligação
- Inversor/gerador, equipamento injetor e sistema de armazenamento (consoante o tipo de análise), por cada tipo de tecnologia de injeção empregue, eletricamente mais distante⁴ do ponto de interligação

Pretende-se verificar que estes equipamentos apresentam o comportamento esperado independentemente da sua posição na rede interna do produtor.

Este requisito não invalida a necessidade de se apresentarem as grandezas elétricas também no ponto de interligação.

7. Apresentação dos resultados de cada uma das simulações

As grandezas elétricas que devem ser apresentadas por cada ponto de medida, numa figura separada, são:

- Tensão
- Corrente
- Potência ativa trifásica
- Potência reativa trifásica

As escalas e legendas dos gráficos devem estar legíveis e devem estar indicadas as unidades de cada uma das grandezas.

³ O equipamento eletricamente mais próximo refere-se ao equipamento cujo ponto de ligação apresenta a menor impedância até ao ponto de interligação com a RESP

⁴ O equipamento eletricamente mais distante refere-se ao equipamento cujo ponto de ligação apresenta a maior impedância até ao ponto de interligação com a RESP

Após obtidos os resultados para cada uma das simulações, deverão ainda ser inseridos no ficheiro do Excel "<número do PLPE> 2 DMGRLR".

8. Softwares de Simulação

Deverá ser utilizado um software de simulação que permita a simulação em regime dinâmico/estabilidade transitória de defeitos simétricos e suportar os modelos dos inversores indicados pelos fabricantes destes. Recomenda-se que também suporte defeitos assimétricos.

Caso os modelos dos geradores não suportem defeitos assimétricos será necessário o recurso a um software adicional de simulação de defeitos em regime estacionário.

9. Conclusões

O estudo deve conter um capítulo com o título de "conclusões" em que deve estar indicado se as simulações realizadas demonstram a conformidade com os requisitos do RfG dos pontos 5.1, 5.2 e 5.3.

10. Critérios de aceitação da conformidade

O estudo apresentado será considerado para demonstração da conformidade com os requisitos indicados do RfG se responder específica e expressamente a todas as seguintes condições:

- Cumprir os requisitos formais apresentados no capítulo 2
- Indicar claramente os pressupostos assumidos na realização do estudo (capítulo 3)
- Conter os dados de entrada indicados no capítulo 4
- Realizar as simulações nas condições indicadas no capítulo 5, ou 6 de aplicáveis
- A apresentação dos dados está conforme com o capítulo 7, incluindo o preenchimento do ficheiro Excel "<número do PLPE> 2 DMGRLR"
- O software de simulação utilizado possui as características indicadas no capítulo 8
- Existir um capítulo de conclusões nos termos do capítulo 9 deste documento
- Caso o centro electroprodutor seja ligado em várias fases (ex.: está prevista a ligação de 20MW numa data e 10MW adicionais numa data posterior) o estudo deverá garantir a apresentação do comportamento da instalação geradora em cada fase, previamente à sua ligação

Não se pode excluir a existência de situações não previstas neste documento que possam conduzir à necessidade de esclarecimentos adicionais dos autores do estudo ou da realização de simulações adicionais para prova de conformidade. Nestes casos, o ORD entrará em contacto com produtor.

11. Confidencialidade

O estudo de simulação não será divulgado pelo ORD sem a autorização do produtor, com a exceção da existência de um pedido das seguintes entidades: entidades de supervisão (DGEG ou ENSE); o regulador do setor elétrico (ERSE); ou autoridades judiciais. O estudo de simulação poderá ser partilhado com o ORT no âmbito de uma análise a um incidente sistémico.