
PRACTICAL EXAMPLE

Calculations for the consumption/injection of your facility

6-REDES

Understand how your facility's consumption/injection calculations are made

Practical example based on an Excel exported from the Digital Counter

The data appears in 15-minute intervals. This is because consumption related to self-consumption is calculated based on the **Quarter-Hourly** Balance (or Saldo Quarto Horário - SOH, in portuguese) (i.e., every 15 minutes).

This balance determines the values that will be considered for billing the consumption contract and for the surplus sale contract (if applicable).

What represents each column?

1	A	В			c	D	E	F	G	Н	1	J	K	L
15	Data	v	Hora	~	Consumo medido na IC, Ativa (kW)	Estado ▼	Injeção na rede medida na IC, Ativa (kW)	r Estado ▼	Consumo registado (kW) ▼	Estado ▼	Injeção registada (kW) ▼	Estado ▼	Valor após SQH ▼	~
16	2024/03/01	1	00:15		0,872	Real	0	Real	0,872	Real	0	Real	0,872	Consumo
17	2024/03/01	1	00:30		0,796	Real	0	Real	0,796	Real	0	Real	0,796	Consumo
18	2024/03/01	1	00:45		0,828	Real	0	Real	0,828	Real	0	Real	0,828	Consumo
19	2024/03/01	1	01:00		0,764	Real	0	Real	0,764	Real	0	Real	0,764	Consumo
20 2	2024/03/01	1	01:15		0,74	Real	0	Real	0,74	Real	0	Real	0,74	Consumo
21 2	2024/03/01	1	01:30		0,5	Real	0	Real	0,5	Real	0	Real	0,5	Consumo
22	2024/03/01	1	01:45		0,264	Real	0	Real	0,264	Real	0	Real	0,264	Consumo

Column A **Date**

Column B

Time

The measurements are taken every quarter-hour (15-minute period).

Column C.

Measured Consumption at the CF (Consumption Facility), Active (kW)

Accounts for the consumption recorded in a specific quarter-hour (15-minute period) after calculating the Ouarter-Hourly Balance (SOH).

Columns D. F. H. J

Status

The data always corresponds to actual values.

Column E

Injection into the Grid Measured at the CF (Consumption Facility), Active (kW)

Accounts for the injection recorded in a specific quarter-hour, after applying the Quarter-Hourly Balance (SQH).

Column G

Registered Consumption Status (kW)

Accounts for the total consumption recorded in a specific quarter-hour. Used to calculate the Quarter-Hourly Balance (SQH).

Column L

Registered Injection Status (kW)

Accounts for the total injection recorded in a specific quarter-hour. Used to calculate the **Quarter-**Hourly Balance (SQH).

Column K

Value after SOH

If the value is positive, the balance results in a Consumption (column C). If it is negative, it results in an Injection (column E).

Column L

Consumption / Injection

Depending on the values after SOH (positive or negative), there will be either consumption or injection during the respective quarter-hour (15-minute period).

Understand how your facility's consumption/injection calculations are made

Practical example based on an Excel exported from the Digital Counter

Practical examples for calculating consumption

How to interpret the values of each row

Example: March 1 - Between 8h45 and 9h00

14	А	В	С	D	E	F	G	Н	1	J	К	L
15	Data	▼ Hora ▼	Consumo medido na IC, Ativa (kV	V) ▼ Estado ▼	Injeção na rede medida na IC, Ativa (kW) 🔻	Estado ▼	Consumo registado (kW) ▼	Estado ▼	Injeção registada (kW) ▼	Estado ▼	Valor após SQH ▼	~
51	2024/03/03	1 09:00	7.0	0,148 Real	0	Real	0,204	Real	0,056	Real	0,148	Consumo

- · Consumed: 0,204 kW / (Column G)
- · Injected into the grid: 0,056 kW / (Column I)

The registered consumption was higher than the registered injection, the **Quarter-Hourly Balance** (SQH) = 0.204 - 0.056 = 0.148 (Column K). A **positive** SQH means that the interval resulted in a **consumption** (Column L).

Example: March 1 - Between 11h00 and 11h15

14	А		В		c	D	E	F	G	Н	1	J	К	L
15	Data	v	Hora	~	Consumo medido na IC, Ativa (kW)	▼ Estado ▼	Injeção na rede medida na IC, Ativa (kW)	Estado ▼	Consumo registado (kW) ▼	Estado ▼	Injeção registada (kW) ▼	Estado ♥	Valor após SQH ▼	~
60	2024/03	3/01	11:15		0	Real	0,256	Real	0,136	Real	0,392	Real	-0,256 In	jeção

- · Consumed: 0,136 kW (Column G)
- · Injected into the Grid: 0,392 kW/(Column I)

The registered consumption was lower than the registered injection, so the **Quarter-Hourly Balance** (SQH) = 0.136 - 0.392 = **-0.256** (Column K). A **negative** SOH means that the interval resulted in an **injection** (Column L).

The measured consumption at the CF (Column C) is therefore 0 kW, and the measured injection into the grid at the CF (Column E) is 0.256 kW.

Understand how your facility's consumption/injection calculations are made

Practical example based on an Excel exported from the Digital Counter

Practical examples for calculating consumption

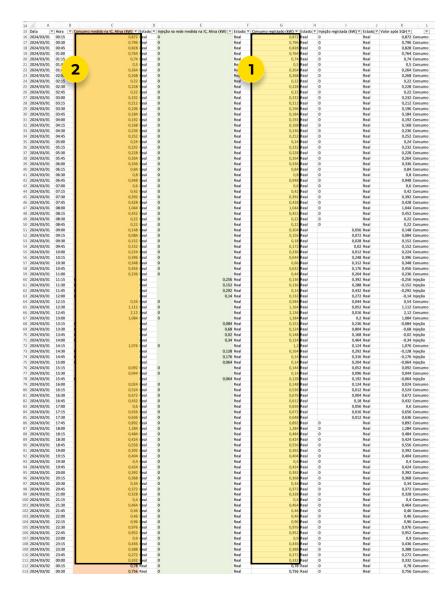
How to calculate the consumed/injected value for one day

Example: March 1

The calculation always starts from the row corresponding to 00:15, as it represents the first 15 minutes of the day, and ends at the row corresponding to 00:00 of the following day, as it includes the time interval from 23:45 to 00:00.

The registered consumption (kW) corresponds to the sum of all the rows from 00:15 on day 1 to 00:00 on day 2 in the respective column (G), resulting in a value of **44.684 kW**.

To obtain this value in kWh, we need to convert the 15 minutes into hours, which is 0.25 hours. Therefore, the registered consumption in kWh in this case is 44.684 × 0.25 = **11,171 kWh**.


2

The **measured consumption** at the consumption facility (kW) corresponds to the sum of all the rows from 00:15 on day 1 to 00:00 on day 2 in the respective column (C), resulting in a value of **40.904 kW**.

Just as with the registered consumption, it is necessary to convert these values to kWh. By multiplying 40.904 by 0.25, we obtain **10.226 kWh**, which is the value corresponding to the measured consumption at the consumption facility.

When subtracting the measured consumption at the consumption installation from the registered consumption, you get 11.171 – 10.226 = **0.945 kWh.**

This value represents the effect of the SQH on your consumption, i.e., it is offset by the amount injected into the grid.

